

INTERNATIONAL JOURNAL CONSERVATION SCIENCE

ROMANIA WWW.ijcs.ro

Volume 16, Issue 4, 2025: 1853-1864

DOI: 10. 36868/IJCS.2025.04.17

REVEALING POTENTIAL PLANTS FOR ECOLOGICAL RESTORATION OF DEGRADED AREAS IN THE SOUTHWESTERN ANDES OF COLOMBIA

Jhoy Fleming Cordoba CALVO^{1*}, Diego Jesus Macias PINTO², Luis-Eduardo Lopez VARGAS², Jorge Mario Becoche MOSQUERA³

- Department of Biology, Doctorate in Environmental Sciences, Research Group on Plant Diversity SACHAWAIRA Universidad del Cauca, Popayán – Colombia, 190004
 - ² Department of Biology, Latin American Ethnobotanical Group-GELA, Research Group on Plant Diversity SACHAWAIRA – Universidad del Cauca, Popayán – Colombia, 190004
- ³ Department of Biology, Doctorate in Environmental Sciences, Research Group in Ecology and Conservation-GECO Universidad del Cauca, Popayán – Colombia, 190004

Abstract

The remnants of the sub-Andean forest in Colombia are key ecosystems due to their high biodiversity and the ecosystem services they provide to communities. However, human activities such as deforestation and fragmentation have put them at risk, highlighting the need for conservation and restoration strategies. Although neotropical forests have been studied, there remains a knowledge gap regarding species with potential for the restoration of degraded areas in this life zone. Therefore, the objective of this study was to characterize species with ecological restoration potential in a forest remnant. Floristic surveys and structural analyses were conducted using 14 Gentry-type transects. A total of 181 vascular plant species were identified, distributed across 72 families, with Piperaceae and Lauraceae being the most diverse. Nineteen species with high restoration potential were selected based on ecological and biocultural attributes such as structural capacity and seed production. The study highlights the value of sub-Andean remnants as biodiversity reservoirs and restoration tools. The integration of local and biocultural knowledge is essential to ensuring the long-term sustainability of these processes.

Keywords: Sub-Andean forest; Biodiversity; Ecological restoration; Vegetation structure; conservation

Introduction

The biodiversity of mountain ecosystems in Colombia stands out, particularly in sub-Andean and tropical Andean forests, which host remarkable species richness and endemism [1]. These characteristics result from complex geological and climatic processes that have occurred over the last two million years [2]. These biomes represent approximately 24.9% of the country's forests, covering an estimated 61,035,628 hectares, of which nearly 60% corresponds to the national flora [3, 4]. However, these areas face significant pressures due to the high population density in the Andean region, which concentrates 70.4% of the national population.

Demographic growth, urbanization, and other anthropogenic activities, such as livestock farming, agriculture, and logging, have subjected these ecosystems to negative transformations [5, 6]. These alterations include deforestation, biodiversity loss, and fragmentation into isolated

_

^{*} Corresponding author: jbecoche@unicauca.edu.co

mosaics, compromising both their ecological functionality and the ecosystem services they provide [7]. In this context, restoration and conservation have become fundamental priorities [8, 9].

Ecological restoration (ER) emerges as a key discipline in designing specific strategies that integrate floristic characterization, essential for assessing species composition and structure [10]. This initial information allows the identification of species with key attributes that facilitate ecological regeneration, promoting biotic interactions and habitat adaptations [11, 12].

Species selection is a critical aspect of restoration processes, prioritizing those with favorable successional trajectories and attributes suitable for the sites to be restored [12-14]. However, knowledge gaps persist regarding the species with the greatest potential for restoration in sub-Andean forest remnants.

Given this scenario, the present study aims to characterize species with ecological restoration potential in degraded areas within sub-Andean life zones. The information obtained will serve as a foundation for classifying species with high potential for implementing management, conservation, and ecological restoration strategies, contributing to the recovery of similar areas [15].

Materials and Methods

Study area

The study was conducted in a 12.5-hectare forest remnant located in the village of La Cuchilla (02° 11' N, 76° 44' W), in the municipality of La Sierra, Cauca, Colombia. This remnant belongs to the premontane humid forest (bh-P) life zone according to Holdridge's classification [16]. The altitudinal gradient ranges between 1785 and 1903 meters above sea level (Fig. 1).

AREA OF STUDY Republic of Colombia Caribbeaan Sea Venezuela Pacific Ocean Pacific Ocean Narino Caquetá Putumayo MUNICIPALITY OF LA SIERRA Patia La Vega Sotará Rosas 76°44′45′W Coordinate System WGS-84 Scale 1:4352 Area of study Reference ecosystem

Fig. 1. Location map of the study area, sub-Andean forest remnant, municipality of La Sierra, Colombia

The village of La Cuchilla is part of the municipality of La Sierra, located in the central region of the department of Cauca, on the western flank of the Central Cordillera, within the Colombian Massif. The altitude of the municipality varies between 700 and 3000 meters above sea level, with predominantly rugged terrain and slopes ranging between 25% and 75%. The

average annual precipitation is 2440mm, with a bimodal distribution pattern characterized by two rainy periods and two dry periods per year. The temperature ranges between 16°C and 24°C [17].

The municipality is irrigated by the sub-watersheds of the Esmita and San Pedro rivers, tributaries of the Patía River basin. The soils in this region are covered by a layer of volcanic ash, which softens the abrupt shapes of the underlying rock and favors mixed land use, including areas dedicated to agriculture, pastures, fallow lands, and forested zones. Among the main crops in the region are coffee, plantain, and sugarcane [17].

Methods

Floristic Composition

During the study, four field trips were conducted to collect fertile vascular plant samples through free collection. During this process, data were recorded on growth habit, size, coloration of vegetative and reproductive parts, and photographic records [18]. The collected material was pressed, alcohol-preserved, and processed at the Herbarium of the Universidad del Cauca (CAUP).

The identification of the samples was carried out by comparing them with exsiccata from the CAUP Herbarium, complemented by consulting online databases such as Tropicos, Plants of the World Online (POWO), and World Flora Online (WFO). Scientific names were verified using these sources.

To estimate expected richness and assess sampling effort, the iNEXT package [19] was used, applying a non-asymptotic approach based on interpolation and extrapolation, which allowed for the construction of the corresponding accumulation curve.

Vegetation Structure

The structural characterization of the forest remnant was conducted using 14 Gentry-type transects of $50\times2m$ (totaling $1100m^2$, equivalent to 0.14ha). The transects were distributed with a 25m separation to avoid overlaps.

In each transect, individuals with a diameter at breast height (DBH) ≥ 1cm were recorded, documenting species, morphology, circumference at breast height (CBH), total height, canopy coverage, and Cartesian coordinates for geolocation [20].

Based on the collected data, the main structural parameters were calculated, including abundance (A), relative abundance (AR), frequency (F), relative frequency (FR), dominance (Do), relative dominance (DoR), and the importance value index (IVI) [20]. Additionally, tree height and canopy coverage area in relation to the total area and spatial distribution of vegetation were evaluated, allowing for the generation of idealized vertical and horizontal profiles based on the most diverse transect.

Selection of Species with Restoration Potential

To identify species with the highest potential for ecological restoration, a pre-selection process was carried out considering ecological attributes, life cycles, and biocultural knowledge. The evaluation was conducted using a scale from 1 to 5 based on ten vital attributes, following the methodology proposed by Vásquez-Valderrama & Solorza-Bejarano [21].

Based on the obtained scores, species were classified into two main categories: those corresponding to pioneer trees and shrubs with rapid growth, and those characterized as slow-growing interior forest species.

The selection of these species was based on key criteria, such as social behavior, constructive capacity, sociability, foliage coverage, and high renewal rate. Attributes related to vegetative reproduction capacity, seed production, resprouting ability after damage, pioneer aptitude, resilience, and competitiveness were also considered. All these factors are essential for facilitating ecological succession and ensuring the success of restoration processes [21] (Table 1).

Table 1. Vital attributes used in the selection of species with potential for ecological restoration
(adapted from Vásquez-Valderrama & Solorza-Bejarano [21])

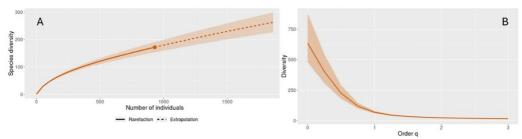
Vital Attribute	Description
Social Behavior	Individuals are distributed close to each other.
Constructive Capacity	The size of individuals significantly contributes to the structural construction
	of vegetation.
Sociability	Tendency to associate with other species (does not form pure stands).
Foliage Coverage	Dense foliage with wide coverage (provides good shade), enabling
	microclimate transformations in its surroundings.
High Renewal Rate	Frequent removal of parts such as leaves, twigs, branches, and roots, which
	have a short life cycle, depositing dead material that contributes to soil
	formation and improvement.
Vegetative Reproduction	Natural conditions for cloning through rhizomes, stolons, layering, cuttings,
	or stakes.
High Seed Production	Species that generate a large number of propagules, embryos, or spores.
Tenacious Resprouting	Rapid and repeated regrowth after physical damage (partial cutting and
	burning).
Pioneer Aptitude and	Ability to colonize, reproduce, and develop without subsidies or assistance in
Hardiness	recently disturbed environments, mainly bare substrates.
Aggressiveness	Species capable of effectively competing with opportunistic species from
	disturbed environments, human-introduced species, or dominant native
	species from a given successional stage; they disrupt the existing floristic
	balance and drive succession toward primary ecosystems.

Results and discussion

Floristic Composition

In the sub-Andean forest remnant, 180 species were identified, distributed across 127 genera and 72 families, reflecting remarkable floristic diversity for a small and fragmented area. Dicotyledons were the most prominent group, with 108 species, followed by monocotyledons (29), bryophytes (24), and lycophytes, monilophytes, and horsetails (20) (Table 2). This predominance of dicotyledons is consistent with the typical structure of sub-Andean forests and highlights their essential role in the floristic composition of these ecosystems.

Table 2. Number of species, genera, and families by determined group


Group	Species	Genera	Families
Dicotyledons	108	71	38
Monocotyledons	29	23	9
Lycophytes, Monilophytes, and Equisetums	20	15	10
Bryophytes	24	18	15
Total	181	127	72

The families Piperaceae (12 species), Lauraceae (9), Asteraceae (8), Fabaceae (8), Araceae (7), and Orchidaceae (7) proved to be the most diverse, which aligns with previous reports identifying them as key components in both conserved areas and disturbed zones [18]. Similarly, genera such as Piper, Nectandra, and Anthurium stood out for their species richness, demonstrating high ecological adaptability and a broad distribution in the Andes [22, 23]. On the other hand, Neckeraceae, Polypodiaceae, and Aspleniaceae accounted for 44.3% of the species among monilophytes and bryophytes, reflecting their relevance in the ecological dynamics of the remnant (Supplementary file 1).

The rarefaction curve showed high sampling representativeness (89.2%), indicating that a significant portion of the present floristic diversity was recorded (Fig. 2A). However, extrapolation suggests that additional species could be incorporated with increased sampling effort. Nevertheless, this analysis should be interpreted cautiously due to the impact of

fragmentation and selective logging, which have likely reduced species richness compared to an intact sub-Andean forest.

The estimated q-order diversity revealed a decline in evenness as the value increases (Fig. 2B). This suggests a community dominated by a few frequent and rare species. This pattern, characteristic of fragmented ecosystems, highlights the need for management strategies that prioritize the conservation of less common species.

Fig. 2. Sampling curve by extrapolation and rarefaction based on sample size (A) and estimated diversity profiles of order q (B)

In terms of growth habit, herbs represented 47% of the species richness, followed by trees and small shrubs (24%), epiphytes (15%), shrubs and subshrubs (11%), lianas and climbers (2%), and one palm and one tree fern (1%). This predominance of herbaceous elements aligns with the findings of Gentry and Dodson [24], who identified similar trends in the tropics, where herbs can account for up to 50% of vascular plant richness. This pattern is influenced by factors such as historical disturbances, local climatic conditions, and the availability of water sources and dispersers [18].

Despite its fragmentation, the sub-Andean forest remnant maintains a species richness comparable to the minimum values proposed by Gentry [25] for neotropical forests between 1500 and 2000m in altitude. This result highlights the ecosystem's resilience and its value as a propagule source for restoration and conservation processes. Furthermore, families such as Asteraceae and Fabaceae were particularly relevant in open areas, acting as pioneers in early succession stages, while Lauraceae and Orchidaceae were associated with more humid and shaded sites, characteristic of intact sub-Andean forests [26, 27].

Vegetal Structure

In the 14 evaluated transects, a total of 829 individuals belonging to 77 species, distributed across 52 genera and 33 families, were recorded. The species with the highest Importance Value Index (IVI) were *Palicourea thyrsiflora*, *Saurauia scabra*, *Oreopanax albanensis*, *Cupania americana*, *Cecropia angustifolia*, and *Myrcia popayanensis*. At the family level, *Piperaceae*, *Lauraceae*, *Primulaceae*, *Rubiaceae*, and *Melastomataceae* stood out due to their structural and functional contributions to the ecosystem (Supplementary files 2 and 3).

Five altimetric strata were identified based on height classes (Figs. 3 and 4):

- The herbaceous stratum (<1.49m) was dominated by *Besleria solanoides*.
- The shrub stratum (1.5 to 3.9m) was characterized by *Oreopanax albanensis, Miconia theizans, Geissanthus sp1, Piper crassinervium*, and *Acalypha macrostachya*.
- The lower tree stratum (4 to 9.9m) included Saurauia scabra, Clusia ellipticifolia, and Palicourea thyrsiflora.
- The intermediate tree stratum (10 to 19.9m) was dominated by Saurauia scabra, Miconia caudata, Palicourea thyrsiflora, Cecropia angustifolia, Ficus caucana, and three species of the genus Nectandra.
- The upper tree stratum ($\geq 20m$) was represented by *Inga sp.*, *Quercus humboldtii*, and *Cecropia angustifolia*.

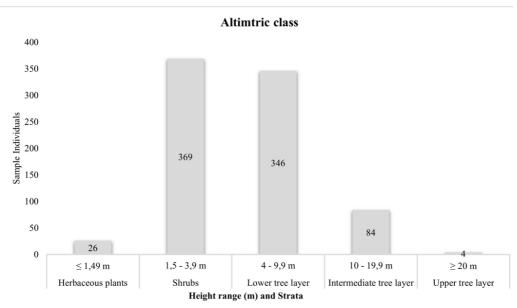


Fig. 3. Vegetation stratification based on altimetric classes

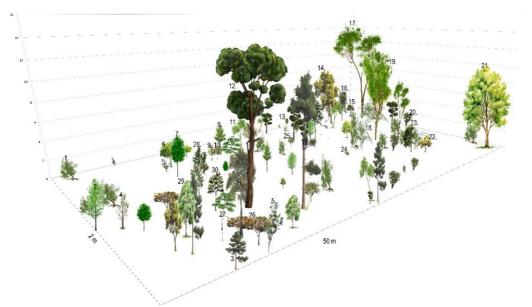


Fig. 4. Vertical profile representing the heights of the most diverse transect:

1. Palicourea thyrsiflora; 2. Piper aequale; 3. Nectandra sp5.; 4. Croton hibiscifolius; 5. Nectandra sp1.; 6. Sapindaceae sp.; 7. Cupania americana; 8. Geissanthus sp2; 9. Geissanthus sp2.; 10. Miconia sp2; 11. Piper hartwegianum; 12. Nectandra sp1.; 13. Piper aduncum; 14. Ficus caucana; 15. Clusia ellipticifolia; 16. Alchornea latifolia; 17. Toxicodendron sp.; 18. Piper crassinervium; 19. Heliocarpus americanus; 20. Besleria solanoides; 21. Myrcia popayanensis; 22. Acalypha macrostachya; 23. Trichanthera gigantea; 24. Asteraceae sp1.; 25. Xylosma benthamii; 26. Billia rosea; 27. Oreopanax albanensis; 28. Miconia caudata; 29. Viburnum sp.; 30. Eugenia sp.; 31. Lauraceae sp2.

The relationship between diameter and height classes reflected the active regeneration of the forest remnant, with high abundance in the lower diameter at breast height (DBH) categories (1.1-3cm) and 3.1-10cm. This pattern indicates a predominance of young individuals and the

impact of anthropogenic practices such as selective logging and fragmentation, which limit the development of mature trees.

Species with the highest canopy coverage values, such as *Nectandra sp1*, *Toxicodendron sp.*, *Ficus caucana*, and *Heliocarpus americanus*, form a semi-open canopy, fostering stable microclimates essential for the regeneration of epiphytic species and other specific growth habits [28, 29].

The high IVI values for *Palicourea thyrsiflora*, *Saurauia scabra*, *Cupania americana*, and *Myrcia popayanensis* highlight their ecological importance and contribution to the forest canopy. These species exhibit morphological traits, such as high CAP values and tall stature, that are fundamental to ecosystem dynamics. Furthermore, the presence of *Myrcia popayanensis* and *Palicourea thyrsiflora* in similar remnants emphasizes their role as indicators of regeneration processes [23].

The secondary succession stage of the remnant, evidenced by the dominance of the shrub and lower tree strata (369 and 346 individuals, respectively), suggests a trajectory toward ecological maturity, provided that anthropogenic pressures are reduced. These characteristics are typical of regenerating secondary forests [30-32]. The canopy cover generated by the lower and intermediate tree strata is key to microclimate stability and habitat formation, promoting biodiversity and ensuring the success of restoration processes [33].

Potential Species for Ecological Restoration

The identification and selection of species with key attributes for ecological regeneration resulted in the preselection of 27 species, of which 19 obtained the highest scores in a vital attributes matrix (Table 3). These species were grouped into two main categories:

- 1. Pioneer trees and shrubs with rapid growth, and
- 2. Interior forest species with slow growth.

This classification enables the design of restoration strategies adapted to different successional stages, maximizing their positive impact in degraded areas.

Table 3. Matrix of Vital Attribute Relationships with Preselected Plant Species, with Assigned Values (1 = Low, 3 = Medium, and 5 = High). The (*) indicates species with the highest value; 1 represents fast-growing species, and 2 represents slow-growing species; (I) indicates interior forest species

I D	Habit	Scientific Name		ty			0	ion	uc	gu			
			Social Behavior	Constructive Capacity	Sociability	Foliage Coverage	High Renewal Rate	Vegetative Reproduction	High Seed Production	Tenacious Resprouting	Pioneer Aptitude	Aggressiveness	TOTAL
1	Tree - Shrub	Trichanthera gigantea (2)	5	3	5	3	5	5	3	5	3	3	40 *
2	Tree - Shrub	Euphorbia laurifolia (1)	3	3	3	3	3	5	5	5	3	1	34
3	Tree	Ochroma pyramidale (1)	5	5	5	5	5	1	5	3	5	5	44 *
4	Tree	Nectandra acutifolia (2)	5	3	5	5	3	3	3	3	3	3	36
5	Tree	Lafoensia acuminata (2)	3	3	3	5	3	1	5	3	3	3	32
6	Tree	Ficus cucana (2)	3	5	3	5	3	1	5	3	3	3	34
7	Tree	Inga densiflora (1) *	3	5	3	5	5	3	5	3	5	3	40 *
8	Tree - Shrub	Erythrina edulis (1) *	5	5	5	3	5	3	3	5	5	5	44 *
9	Tree	Erythrina poeppigiana (1)	5	5	5	5	5	5	5	5	3	3	46 *

1	Tree	Clusia ellipticifolia (2) *	5	5	5	3	5	3	5	5	3	3	42
0		(I)											*
1 1	Tree - Shrub	Croton hibiscifolius (1) *	5	5	5	3	5	3	5	5	5	5	46 *
1 2	Tree	Heliocarpus americanus (1) *	5	5	5	5	5	3	5	5	5	5	48
1 3	Tree	Myrcia popayanensis (1) *	5	5	5	5	3	3	5	3	5	3	42 *
1 4	Tree	Cedrela montana (1) *	5	5	5	5	5	3	5	3	3	5	44 *
1 5	Tree	Cecropia angustifolia (1)	5	5	5	5	5	2	5	3	5	5	45 *
1 6	Tree - Shrub	Cinchona pubescens (2)	3	3	3	5	3	2	5	3	3	5	35
1 7	Tree	Cupania americana (1) *	5	5	5	5	5	3	5	5	3	3	44 *
1 8	Tree	Cordia alliodora (2)	5	3	3	5	3	1	5	3	3	3	34
9 2	Tree	Quercus humboldtii (2) *	5	5	3	5	3	3	5	3	3	5	40 *
0	Tree	Eugenia sp. (2) (I)	5	3	5	3	3	1	5	3	3	3	34
2	Tree – Small Tree	Miconia caudata (1)	3	3	3	5	3	5	5	3	3	3	36
2 2	Tree	Saurauia scabra (1) *	5	5	5	5	5	3	5	3	3	5	44 *
2 3	Tree – Small Tree	Oreopanax albanensis (2) * (I)	5	5	5	5	5	3	5	5	3	3	44 *
2 4	Shrub	Piper aduncum (1) *	5	5	5	3	3	5	5	5	5	5	46 *
2 5	Tree	Juglans neotropica (1) *	5	5	5	5	5	3	5	3	3	5	44 *
6	Tree	Inga sp (2) * (I)	5	5	5	5	3	3	5	3	3	5	42
2 7	Tree – Small Tree	Mabea sp. (1) * (I)	5	5	5	5	5	3	5	3	3	3	42 *

Among the selected species, *Heliocarpus americanus, Cecropia angustifolia, Erythrina poeppigiana, Trichanthera gigantea*, and *Piper aduncum* stand out for their high values in attributes such as social behavior, structural capacity, high seed production, and aggressiveness. These characteristics make them dynamogenic species, as they modify the microclimate, generate significant biomass, and promote ecological interactions between flora and fauna [34]. These dynamics are essential to facilitate successional processes and ensure the success of ecological restoration.

The importance of these species lies in their capacity to build most of the biomass, generate canopy coverage that stabilizes the microclimate, and facilitate environmental changes that support vegetation succession. This aligns with the findings of Rodríguez et al. [35], who emphasize the importance of identifying key species that promote the transition of plant communities toward more complex successional stages.

Furthermore, this research takes an integrative approach, recognizing the role of local communities in restoration processes. Incorporating traditional knowledge into the selection and management of species fosters sustainability and biocultural appropriation of restored areas. This approach ensures positive outcomes in the medium and long term, strengthening the relationship between communities and their natural environment.

A comparison with previous studies, such as Trujillo [36], reveals notable overlaps in the selection of key species, including *Cinchona pubescens, Quercus humboldtii, Cordia alliodora*, and *Piper aduncum*. These similarities underscore the usefulness of these species for restoring areas with comparable conditions, demonstrating that their inclusion can guide replicable restoration strategies in other sub-Andean forest remnants. This highlights the importance of

developing restoration processes that not only restore ecosystems but also reinforce the biocultural connection between communities and their environment.

Conclusions

This study highlights the critical role of sub-Andean forest remnants as biodiversity reservoirs and drivers of ecological restoration in fragmented landscapes of the southwestern Andes of Colombia. Despite human pressures, these ecosystems demonstrate significant resilience and invaluable potential for the regeneration of degraded areas.

The research identified 180 plant species distributed across 72 families and 127 genera, with families such as Piperaceae, Lauraceae, and Asteraceae standing out due to their high richness and ecological adaptability. The structural characterization of the remnant allowed the definition of five altitudinal strata, with a higher concentration of individuals in the shrub and lower tree strata, reflecting an active secondary succession stage. Additionally, 19 key species with high restoration potential were selected based on attributes such as high seed production, pioneer behavior, and structural capacity. These species not only promote successional progress but also stabilize microclimates favorable for biodiversity.

The results go beyond the local scale, providing a replicable framework for identifying key species in restoration processes in similar sub-Andean areas. This approach can be incorporated into regional conservation programs and public policies, emphasizing the need to integrate biocultural knowledge as a tool to ensure the sustainability of restored ecosystems. The study significantly contributes to restoration ecology by developing a robust methodology for selecting species with key functional traits that facilitate ecological regeneration. Moreover, it highlights the importance of sub-Andean remnants as functional hubs for biodiversity conservation and the restoration of fragmented ecosystems.

It is recommended to further explore the ecological dynamics of the selected species, evaluating their performance in different successional stages and under varying climatic conditions. Additionally, it would be valuable to investigate how land-use changes and community practices influence the long-term effectiveness of these species in restoration. It is crucial for researchers, decision-makers, and local communities to collaborate in implementing these ecological restoration strategies. Integrating scientific and biocultural

implementing these ecological restoration strategies. Integrating scientific and biocultural knowledge in these processes will not only strengthen ecosystem resilience but also foster sustainable stewardship of restored territories. This joint effort is key to ensuring the recovery of fragmented landscapes in the southwestern Andes and other highly biodiverse regions.

Acknowledgments

We especially thank the principal, teaching staff, and students of the Nueva Generación Educational Institution in the La Cuchilla village, municipality of La Sierra, Cauca, for their willingness and collaboration in the development of this research. Likewise, we acknowledge the Universidad del Cauca for the institutional and logistical support provided.

References

- [1] D. Armenteras, J.M. Espelta, N. Rodríguez, J. Retana, Dinámica y factores impulsores de la deforestación en diferentes tipos de bosques en América Latina: tres décadas de estudios (1980–2010), Cambio Ambiental Global, 46, 2017, pp. 139-147.
- [2] O. A. León Moya, D. I. Jiménez, C. Marín, G. F. Medina, M. V. Sarmiento, J. E. Díaz, C. E. Cadena-Vargas, Transición bosque-páramo: Bases conceptuales y métodos para su identificación en los Andes colombianos, Instituto de Investigación de Recursos

- Biológicos Alexander von Humboldt, Ministerio de Medio Ambiente y Desarrollo Sostenible, 2017.
- [3] * * *, Food and Agriculture Organization-FAO, Global Forest Resources Assessment, Desk Reference, Food and Agriculture Organization of the United Nations, Rome, 2020, https://doi.org/10.4060/ca9825en.
- [4] M. F. Gómez, L. A. Moreno, G. I. Andrade, C. Rueda, Biodiversidad 2015: Estado y tendencias de la biodiversidad continental de Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2015.
- [5] L. D. Llambí, M. T. Becerra, M. Peralvo, A. Avella, M. Baruffol, L. J. Díaz, Monitoreo de la biodiversidad y los servicios ecosistémicos en los ecosistemas altoandinos de Colombia: Hacia una estrategia integrada, Investigación y Desarrollo de las Montañas, 39(3), 2019, pp. 8-20.
- [6] A. O. Ospina, S. P. Vanegas, E. N. Gonzalo, W. Ramírez, J. J. Sánchez, Plan nacional de restauración, restauración ecológica, rehabilitación y recuperación de áreas disturbadas, MinAmbiente, 2015.
- [7] J. Fernández-Labbé, *El territorio como espacio contradictorio: promesas y conflictos en torno a la actividad extractiva en Ecuador, Colombia, Perú y Chile*, **EURE (Santiago)**, **46**(137), 2020, pp. 225-246. https://doi.org/10.4067/S0250-71612020000100225.
- [8] L. P. Giraldo, J. Chará, A. M. Chará-Serna, Y. P. Ramírez, Restauración de corredores ribereños en paisajes ganaderos de la zona andina colombiana: efectos tempranos en el ambiente acuático, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 2020, pp. 652-664. https://doi.org/10.18257/raccefyn.1063.
- [9] C. E. Roa-García, A. M. Torres-González, Caracterización florística y estructural como línea de base para la restauración ecológica de bosques en la microcuenca del río Barbas, Colombia, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(174), 2021, pp. 190-207. https://doi.org/10.18257/raccefyn.1167.
- [10] C. Murcia, M. R. Guariguata, V. Gálmez, *La restauración de bosques andinos tropicales: Avances, desafíos y perspectivas del futuro*, **CIFOR**, 2017.
- [11] A. L. Montenegro, O. Vargas, Atributos vitales de especies leñosas en bordes de bosque Altoandino de la Reserva Forestal de Cogua (Colombia), Biología Tropical, 56(2), 2008, pp. 705-720. https://doi.org/10.15517/rbt.v56i2.5618.
- [12] C. Xu, H. Zhang, H. Yang, C. Chen, C. Wang, A quick and effective trait-based protocol for selecting appropriate native plant species for the reforestation of degraded tropical mines, Frontiers in Plant Science, 15, 2024, https://doi.org/10.3389/fpls.2024.1456740.
- [13] A. M. Cogollo Calderón, P. Velasco Linares, L. Manosalva, Caracterización funcional de plantas y su utilidad en la selección de especies para la restauración ecológica de ecosistemas altoandinos, **Biota Colombiana**, **21**(1), 2020, pp. 1-15, https://doi.org/10.21068/c2020.v21n01a01.
- [14] L. Cortés-Ballén, S. Camacho-Ballesteros, M. Matoma-Cardona, *Estudio de la composición* y estructura del bosque andino localizado en Potrero Grande, Chipaque (Colombia), **Revista UDCA Actualidad & Divulgación Científica**, **23**(1), 2020, Article Number: 20. https://doi.org/10.31910/rudca.v23.n1.2020.1483.
- [15] A. Álvarez-Holguín, C. R. Morales-Nieto, R. Corrales-Lerma, J. M. Ochoa-Rivero, O. C. Ponce-García, J. A. Prieto-Amparán, J. H. Vega-Mares, F. Villarreal-Guerrero, Grass species with potential for rangelands restoration in northern Mexico: an assessment with environmental niche modeling, Scientific Reports, 14, 2024, Article Number: 6318, https://doi.org/10.1038/s41598-024-56918-1.

- [16] L. Holdridge, *Determination of World Plant Formations from Simple Climatic Data*, Science, 105(2727), 1947, pp. 367-368. https://doi.org/10.1126/science.105.2727.367.
- [17] * * *, Alcaldía Municipal. La Sierra (Cauca, Colombia), *Plan de Desarrollo Municipal "La Sierra, territorio de paz sostenible e inclusivo" 2024-2027*, **Technical Document**, 2023.
- [18] P. B. Ramírez, Riqueza de plantas vasculares en el Sendero Ecológico Mariposas de Cristal, Parcelación Señora María Rosa, Cajibío-Cauca, Revista Novedades Colombianas, 17(1), 2022, Article Number: 26. https://doi.org/10.47374/novcol.2022.v17.2210.
- [19] A. Chao, K. H. Ma, T. C. Hsieh, *iNEXT (iNterpolation and EXTrapolation) online: Software for interpolation and extrapolation of species diversity*, Program and User's Guide, 2016, http://chao.stat.nthu.edu.tw.
- [20] M. G. Aguilar, W. Ramírez, Monitoreo a procesos de restauración ecológica aplicado a ecosistemas terrestres, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2015.
- [21] M. Vásquez-Valderrama, J. Solorza-Bejarano, Agrupación funcional de especies vegetales para la restauración ecológica de ecosistemas de montaña, Colombia Forestal, 21(1), 2018, pp. 5-17. https://doi.org/10.14483/2256201X.11730.
- [22] J. Rangel-Ch, *La diversidad florística en el espacio andino de Colombia*, En: **Biodiversity and Conservation of Neotropical Montane Forest**, (Edirors: S. Churchill, H. Balslev, E. Forero, J. Luteyn), New York Botanical Garden, 1995, pp. 187-205.
- [23] N. A. Camargo-Espitia, P. A. Gil-Leguizamón, M. E. Morales-Puentes, *Vegetación de un bosque subandino en Bolívar, Santander-Colombia*, **Revista de Biología Tropical**, **67**(4), 2019, pp. 989-998. http://dx.doi.org/10.15517/rbt.v67i4.32169.
- [24] A. H. Gentry, C. Dodson, *Contribution of nontrees to species richness of a tropical rainforest*, **Biotropica**, **19**(2), 1987, pp. 149-156. https://doi.org/10.2307/2388737.
- [25] A. H. Gentry, *Patterns of Neotropical plant species diversity*, **Evolutionary Biology**, **15**, 1982, pp. 1-84. https://doi.org/10.1007/978-1-4615-6968-8_1.
- [26] G. Bolaños, C. Feuillet, E. Chito, E. Muñoz, B. Ramírez, Vegetación, estructura y composición de un área boscosa en el Jardín Botánico "Álvaro José Negret," Vereda La Rejoya, Popayán (Cauca, Colombia), Boletín Científico Centro de Museos Museo de Historia Natural Universidad de Caldas, 14(2), 2010, pp. 19-38.
- [27] J. O. Rangel, A. Velásquez, Métodos de estudios de la vegetación, En: Colombia: Diversidad Biótica II: Tipos de vegetación en Colombia, (Editors: J.O. Rangel, P.D. Lowy, M. Aguilar), Universidad Nacional de Colombia, 1997, pp. 59-87.
- [28] V. Correa, M. J. Sanín, D. Tuberquia, *Transición bosque altoandino páramo: composición, estructura y fisonomía de la vegetación en la Cordillera Central de Colombia*, Caldasia, 45(1), 2023, pp. 174-186. https://doi.org/10.15446/caldasia.v45n1.102305.
- [29] C. García-Luna, A. Carrillo-Bastos, L. Q. Cutz-Pool, C. González-Salvatierra, *Composición de las epífitas vasculares asociadas al manglar ribereño en la comunidad de Ramonal, Quintana Roo, México*, **Madera y Bosques**, **30**(4), 2024. https://doi.org/10.21829/myb.2024.3042616.
- [30] L. G. Acosta-Vargas, D. Arias-Aguilar, J. C. Valverde, *Caracterización florística del bosque montano y subpáramo del volcán Irazú, Costa Rica*, **Acta Biológica Colombiana**, **29**(1), 2024, pp. 32-40. https://doi.org/10.15446/abc.v29n1.97088.
- [31] A. J. Alvarado Reyes, L. Rosero Lasprilla, O. A. Jara Muñoz, *Estructura y composición florística de un bosque subandino en Togüí (Boyacá, Colombia)*, **Biota Colombiana**, **25**, 2024, Article Number: e1202. https://doi.org/10.21068/2539200X.1202.

- [32] D. Gutiérrez-Duque, J. A. Prieto-Luna, M. J. Andrade-Ramos, J. A. Sierra-Giraldo, C. Feuillet-Hurtado, *Composición, estructura y diversidad florística del bosque Monteleón: Un relicto urbano del bosque subandino (Manizales, Colombia)*, **Colombia Forestal, 27**(1), 2024, pp. 1-22. https://doi.org/10.14483/2256201x.20968.
- [33] R. Rodríguez, D. Monsalve, Caracterización estructural y patrón de riqueza de un bosque andino ubicado en la vereda Catalamonte, municipio de Tena Cundinamarca, Colombia, Undergraduate thesis, Universidad Distrital Francisco José de Caldas, 2013.
- [34] L. Neuenkamp, D. García de León, U. Hamer, N. Hölzel, E. McGale, S. E. Hannula Comprehensive tools for ecological restoration of soils foster sustainable use and resilience of agricultural land, Communications Biology, 7, 2024, Article Number: 1577. https://doi.org/10.1038/s42003-024-07275-2.
- [35] A. R. Rodríguez-Lombana, H. E. Beltrán-Gutiérrez, A. C. Moreno, *Caracterización florística del bosque subandino y algunas áreas disturbadas en San Bernardo (Cundinamarca), Colombia*, **Biota Colombiana**, **18**(2), 2017, pp. 42-71. https://doi.org/10.21068/c2017.v18n02a04.
- [36] A. Trujillo, Plantas vasculares y especies potenciales para la restauración ecológica de la microcuenca del río Pescador, Undergraduate thesis, Universidad del Cauca, 2017.

Received: February 20, 2025 Accepted: October 25, 2025