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Abstract  

 

Seagrasses are marine plants that efficiently store carbon. Understanding their role in climate 

change requires information on seagrass area and carbon content, which is currently lacking 

in Indonesia. The objectives of this study are to (1) develop a mapping model of seagrass 

aboveground carbon stock (AGC) dynamics based on percents of seagrass cover, (2) map AGC 

dynamics using multitemporal Sentinel-2 imagery and (3) analyze patterns and factors affecting 

AGC dynamics. This study used two regression models, random forest regression (RFR) and 

stepwise regression (SWR). The RFR regression model produced a more accurate and 

consistent AGC map with R2=0.21 (RSME=5.04gC/m2) for the Ea class and R2=0.24 

(RSME=1.99gC/m2) for the ThCr class. Meanwhile, SWR produced an accurate AGC map for 

the EaTh class with R2=0.15 (RSME=2.90gC/m2). Both models were applied to Sentinel-2 

images for 15 months, from April 2021 to December 2023. The highest AGC for the RFR model 

was shown in October 2021 with 0.104 tons of carbon and for the SWR model in December 

2023 with 0.105 tons from a total seagrass cover area of 1.15km2. Biophysical variables like 

rainfall can affect AGC dynamics. As rainfall increases, the AGC estimate tends to increase.  

 

Keywords: Seagrass; Species composition; Percent cover; Aboveground carbon stoc; Sentinel-

2; mapping 
 

 

Introduction  

 

Climate change and global warming represent significant international challenges, given 

their profound impacts on human life and the environment. These phenomena can result in a 

number of adverse effects, including an increased frequency and intensity of extreme weather 

events, changes in sea surface temperatures, rising sea levels and alterations in seawater pH [1]. 

One strategy for addressing the impacts of climate change is the utilization of blue carbon 

ecosystems, which include mangroves, seagrasses and algae. The effective management and 

utilization of these ecosystems can assist in the mitigation of the impacts of climate change by 

supporting the ecosystem services of carbon sequestration, biodiversity preservation and coastal 

protection [2, 3]. 

Seagrass is a type of marine vegetation that has the capacity to absorb and store carbon in 

an effective and efficient manner [4]. As autotrophic plants, seagrasses bind carbon dioxide and 

convert it into energy, contributing to their high primary productivity. This energy enters the food 

chain either through direct predation by herbivores or through decomposition as litter [5]. 

Seagrass carbon stocks can be measured in both aboveground and belowground components. The 
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term 'aboveground carbon stock' (AGC) refers to the carbon stored in seagrass parts above the 

sediment surface, including stems, leaves and flowers [6]. 

Seagrasses cover only approximately 2% of the ocean but can sequester up to 15% of the 

total oceanic carbon [7-9]. In Indonesia, seagrass meadows have the potential to cover 1.847.341 

hectares [9], though only 293.464 hectares have been verified. These verified areas are estimated to 

sequester between 1.6 and 7.4 Tg C/year [9]. Approximately 12 species of seagrasses are distributed 

across Indonesia's coastal waters [5], each with varying carbon storage capacities due to differences 

in size. According to Kennedy and Björk [10], seagrass species with larger morphological forms 

tend to have greater biomass, thus exhibiting higher carbon accumulation capacities. Therefore, in 

order to understand the potential of each seagrass species in carbon storage, it is necessary to have 

knowledge of their distribution in specific areas. A comprehensive inventory of seagrass species, 

including their spatial distribution and carbon stock, is essential for optimizing the use of seagrass 

ecosystems. Such data can inform policies for environmental conservation and the sustainable use 

of marine resources [11-13]. However, data on the distribution and condition of seagrasses in 

Indonesia remain limited and require further validation [4, 5]. 

Access to seagrass habitats is challenging due to environmental influences and habitat 

complexity. Field survey methods for data acquisition are time-consuming, costly and lack spatial 

extensiveness, particularly over time [14-16]. A rapid assessment is necessary because the 

validated seagrass area in Indonesia is yet to reach the potential 1.8 million hectares of seagrass 

ecosystems [9]. One effective approach is to utilize remote sensing technology in conjunction 

with field measurement data to map percent cover (PC) and seagrass above-ground carbon stock 

(AGC) [17, 18]. This method provides a non-destructive alternative for obtaining seagrass AGC 

data by interpreting biophysical aspects of seagrass, such as percent cover, through remote 

sensing [19-24]. A.J. Wahyudi et al. [24] demonstrated that seagrass PC is strongly correlated 

with AGC, with a higher PC value indicating greater carbon storage potential. Consequently, 

rapid assessments of seagrass AGC based on PC data, in conjunction with existing formulas, can 

effectively estimate seagrass AGC. 

Nevertheless, the applicability of existing seagrass AGC mapping models across diverse 

locations with varying environmental conditions and species distributions remains uncertain [25]. 

Furthermore, the efficacy of these methods in multi-temporal studies, considering seasonal or long-

term environmental changes, is yet to be fully elucidated [26]. Additional challenges include the 

limitations of remote sensing in estimating seagrass AGC due to factors such as tidal influences, 

benthic habitat complexity and the spectral reflectance similarity of benthic habitats. Consequently, 

there is a need to develop a seagrass AGC mapping model that addresses these challenges. 

The objective of this study is to develop a mapping model for seagrass AGC dynamics at 

the species composition level using non-destructive methods based on Sentinel-2 reflectance 

values and seagrass PC. The developed model will be used to map AGC dynamics using 

multitemporal Sentinel-2 images and to analyze patterns and factors influencing seagrass AGC 

dynamics in the study area. The choice of Sentinel-2 imagery was motivated by its free 

availability and extensive coverage of the Earth's surface, rendering it a promising tool for 

seagrass and benthic habitat mapping [27-30]. Furthermore, Sentinel-2 offers a spatial resolution 

suitable for local- to national-level mapping and a high temporal resolution of 5-10 days, which 

is beneficial for monitoring seagrass AGC dynamics and understanding seasonal and long-term 

changes in seagrass ecosystems [29].  

The research was conducted on Pari Island, located in Kepulauan Seribu, within the 

administrative area of DKI Jakarta Province (Fig. 1). This site was selected due to its extensive 

seagrass coverage and species diversity [31].  

However, the seagrass ecosystem on Pari Island has been degraded by human activities 

such as reclamation, coastal development, pollution and destructive fishing practices, as well as 

by climate change [31]. These factors have led to significant changes in seagrass cover on the 

island [32]. Variations in the percentage of seagrass cover affect the seagrass carbon stocks on 
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Pari Island. Therefore, it is crucial to map the dynamics of seagrass AGC to understand the spatial 

and temporal distribution and factors influencing these dynamics. The analysis results are 

essential for developing conservation policies aimed at reducing exploitation, preventing damage 

and preserving the ecological role of seagrass beds in coastal ecosystems. 

 

 
 

Fig. 1. The distribution of photo-transect samples collected during a field survey that took place from February 27 to 

March 3, 2023. These samples are overlaid on a Sentinel-2A image median composite of April 2021 

 

Experimental part 

 

Materials 

The Sentinel-2 image utilized in this study was obtained at Level 2A (L2A), which has 

undergone atmospheric correction to yield surface reflectance (SR) data. This study exclusively 

utilized bands with a spatial resolution of 10 meters, specifically blue (B2 - centered at 492.4 

nm), green (B3 - 559.8nm), red (B4 - 664.6nm) and near-infrared (B8 - 832.8nm). The imagery 

has a radiometric resolution of 12 bits and is projected using the Universal Transverse Mercator 

(UTM) system within the 48 M zone. Sentinel-2A images from April 2021 to December 2023 

were analyzed at intervals of two to three months (Table 1). Monthly median composites were 

obtained from multitemporal images of the selected months to enhance image quality and mitigate 

disturbances such as cloud cover or noise [33]. Median composites are particularly resilient to 

abrupt changes caused by disturbances in individual temporal images, as the median value is more 

stable compared to the mean or maximum value [34]. 

 
Table 1. Sentinel-2A images used in this research 

 

Year Month Dates Year Month Dates 

2021 April 9, 14, 24, 29 2023 January 9, 14, 24 

June 8, 13  April 9, 14, 19, 24, 29 

August 7, 12, 17, 27  June 3, 28 

October 6, 11, 16, 26  August 7, 12, 17, 22, 27 

2022 January 4, 24  October 11, 16, 21, 26, 31 

March 5, 10, 20  December 10, 15, 20, 25, 30 

May 14, 24, 29    

August 7, 12, 17    

November 5, 25    
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The selected image conditions for analysis were cloud-free, low tide and sunglint-free. 

Consequently, no water column or sunglint correction process was necessary. Fifteen monthly 

median composite Sentinel-2A images, spanning three years, were used to map seagrass AGC. 

However, the median composite images for the months of February and March 2023, which 

coincided with the field data collection, exhibited a high level of cloud cover, rendering them 

unsuitable for the construction of seagrass AGC mapping models. Consequently, the image used 

for the construction of the remote sensing model for AGC mapping was the median composite 

image from April 2023, as it was the closest alternative. 

Methods 

Field Survey 

The field survey was conducted between 27 February and 3 March 2023. The transect 

lines were established based on the visual similarity of the spatial distribution of benthic habitat 

cover observed in the images (Fig. 1). Samples in the form of benthic photos were collected using 

the photo-transect method [35] along the transect line by snorkeling with an underwater camera, 

maintaining an interval of approximately 1 meter between photos. A GPS device in tracking mode 

recorded coordinates every 2 seconds, synchronized with the camera's clock.  

The benthic photos were geotagged and analyzed using CPCe software to measure benthic 

habitat cover and identify seagrass species in each photo. Seagrass PC data were utilized to 

calculate the AGC values based on the PC-AGC equation [17]. The dataset was partitioned into 

70% for model creation and 30% for validation. The selection of model and validation samples 

was conducted by considering the spatial distribution of samples, species variations and variations 

in seagrass PC. In total, 1711 photos of benthic habitat were collected, with 1172 designated for 

mapping model development and 539 for validation. Of these, 710 samples were classified as 

seagrass and used for seagrass species composition mapping and AGC mapping model 

development. The seagrass samples were subsequently classified into three categories: 189 

samples of the Ea class, 550 samples of the ThCr class and 46 samples of the EaTh class. For a 

detailed description of each seagrass species composition class, please refer to Table 2. 

 

Benthic Habitat Classification and Seagrass Species Composition Mapping 

Benthic habitat mapping was conducted with the objective of obtaining mask data for 

seagrass species mapping and in the empirical modeling of seagrass AGC at the species level. 

The classification scheme for benthic habitat mapping includes three primary categories: coral, 

seagrass and bare substrate. Given the non-clustered distribution of benthic habitats in the waters 

around Pari Island, the scheme was adjusted to include combination and mixed classes. For the 

purpose of seagrass species and AGC mapping, only pixels classified as the dominant seagrass 

class and the combination or mixed seagrass class were utilized. 

Mapping the distribution of seagrass species is essential for obtaining species boundaries 

in seagrass AGC mapping, as each species has a different capacity for storing AGC. However, 

this mapping process is challenging due to the similar reflectance values of different seagrass 

species, even when using hyperspectral data [36]. Consequently, a refined classification scheme 

for seagrass species was developed, based on attributes such as life form variation [14]. Details 

of each seagrass species composition class are provided in Table 2. 

 
Table 2. Classification scheme of seagrass species composition used for mapping based on Wicaksono and Hafizt [14] 

 

Species Composition Class Class Description 

Ea Area dominated by Ea (≥ 80%) 

EaTh Mixed area of Ea, Th and Cr with relatively proportional composition. Cs, Si 

and Ho can also be found with minor percentage 

ThCr Mixed area between Th and Cr with relatively proportional 

composition. Cs, Si and Ho can also be found with minor percentage 
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The classification of benthic habitat and seagrass species composition was conducted 

using the random forest (RF) algorithm. The RF algorithm operates by constructing multiple 

decision trees and combining their outputs to achieve more stable and accurate predictions [37]. 

This study evaluated four scenarios with varying numbers of trees: 50, 100, 200 and 300. The RF 

algorithm requires functions for random feature selection and impurity assessment during its 

operation [38-40]. In this study, all used combinations of functions on randomly selected features 

in the form of square root and log and impurity functions in the form of gini and entropy. The 

selection of benthic habitat classification results and seagrass species composition for empirical 

AGC modeling was based on the stability and consistency of the RF algorithm's accuracy. This 

accuracy was measured in terms of overall accuracy (OA), producer's accuracy (PA) and user's 

accuracy (UA) from the confusion matrix for each model's accuracy assessment. 

AGC Mapping 

The AGC of each seagrass species was derived from seagrass PC data collected from field 

surveys using the PC-AGC equation at the species level, developed by P. Wicaksono et al. [17]. 

The seagrass PC data for each species was used to calculate the AGC based on species composition 

classification. The specific PC-AGC formulas employed are detailed in Table 3.  

 
Table 3. Equations to convert seagrass PC to AGC used in this research [17] 

 

Seagrass Species PC-AGC Equation 

Enhalus acorodies (Ea) 𝐴𝐺𝐶𝐸𝑎 = 0.3179(𝑃𝐶𝑉𝐸𝑎) + 0.6295 

Thalassia Hemprichii (Th) 𝐴𝐺𝐶𝑇ℎ = 0.1069(𝑃𝐶𝑉𝑇ℎ) + 0.0951 

Cymodocea rotundata, Halodule univeris (CrHu) 𝐴𝐺𝐶𝐶𝑟𝐻𝑢 = 0.0604(𝑃𝐶𝑉𝐶𝑟𝐻𝑢) − 0.1767 

Syingodium isoetifolium, Halophila ovalis (SiHo) 𝐴𝐺𝐶𝑆𝑖𝐻𝑜 = 0.00268(𝑃𝐶𝑉𝑆𝑖𝐻𝑜) − 0.0022 

Cymodocea serrulata (Cs) 𝐴𝐺𝐶 = 0.1028(𝑃𝐶𝑉) + 1.449 

(community-level equations) 

 

In the study area around Pari Island, the species Cymodocea serrulata (Cs) was identified. 

However, this species lacks a specific PC-AGC equation in the referenced literature, necessitating 

the use of a community-level equation for AGC calculations. The samples were then divided into 

two sets: one for training the regression model and another for assessing the accuracy of the resulting 

AGC map. 

The seagrass AGC mapping model was developed using Sentinel-2A monthly median 

composite data, employing two regression techniques: random forest regression (RFR) and 

stepwise regression (SWR). RFR minimizes the error between predicted and reference values 

through a non-parametric algorithm that iteratively generates a regression model [41, 42]. During 

the model development process, a number of Random Forest Regression (RFR) parameters were 

tested, including the number of trees (nTree: 50, 100, 200, 300), functions (square root and user-

specified number of features or mtry) and the minimum number of samples in nodes (2, 3, 5 and 

10). The optimal RFR parameter combination was then applied to multitemporal images to 

analyze AGC dynamics using the RFR mapping model. SWR is an automated procedure that 

selects the most predictive variables for the regression model [43, 44]. The SWR process 

identifies the optimal predictors to include, utilizing solely the bands selected in the final stepwise 

model for monthly multitemporal imagery analysis.  

The accuracy of seagrass AGC mapping was evaluated using the correlation coefficient 

(r) and the coefficient of determination (R²) and root mean square error (RMSE) values based on 

independent field data. The most accurate regression models from RFR and SWR were employed 

in this study to ascertain the most suitable model for each monthly multitemporal image. 

Multitemporal Analysis 

A multitemporal seagrass AGC map was obtained and the AGC of seagrasses over 15 

months was calculated. Monthly changes in AGC were then assessed. To analyze the factors 
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influencing seagrass AGC dynamics, AGC values were compared with various environmental 

parameters. The factors affecting the dynamics of seagrass AGC include changes in chlorophyll-

a concentration, rainfall, salinity and sea surface temperature (SST) [44]. Monthly average 

rainfall data were sourced from the Climate Hazards Group InfraRed Precipitation with Station 

(CHIRPS) [45], while data on chlorophyll-a concentration, monthly average salinity and monthly 

SST were obtained from Marine Copernicus [46]. Pearson correlation analysis was employed to 

measure the statistical relationships between monthly variations in seagrass AGC and the 

environmental factors of chlorophyll-a concentration, salinity, rainfall and SST. Furthermore, the 

multitemporal seagrass AGC results were employed to ascertain the consistency of AGC at each 

pixel by utilizing the coefficient of variation technique. 

Flowchart 

The flowchart of this research is shown in Fig. 2. 

 

 
 

Fig. 2. Research flowchart 

 

Results and discussion 

 

Benthic Habitat Mapping 

Figure 3 illustrates the benthic habitat map achieved using the RF algorithm with the 

highest accuracy (OA 51.02%). The experimental results from various hyperparameter scenarios 

indicate that the optimal OA was obtained with the following hyperparameters: impurity function 

set to gini, randomly selected features set to the square root of the number of features and nTree 

set to 50. The classification identified nine benthic habitat classes, including three dominant 

classes and six combination or mixture classes (Table 4).  
 



ANALYSIS OF SEAGRASS ABOVEGROUND CARBON STOCK DYNAMICS IN PARI ISLAND  

 

 

http://www.ijcs.ro 1173 

 
 

Fig. 3. Benthic habitat map obtained from RF classification algorithm with 51.02% OA 

 

Table 4. Summary of UA and PA of the benthic habitat map with the highest OA 

 

Benthic Class Area (ha) UA (%) PA (%) OA (%) 

BS + Sg 33.05 22.92 18.03 51.02 

BS Dominated 120.50 48.18 67.35 

C + BS 0.54 33.33 20.00 

C + M Dominated 156.77 72.30 26.43 

Mix BS C M 66.16 63.49 53.33 

Mix Sg BS 59.03 38.67 34.12 

Sg + BS 21.28 31.58 31.58 

Sg Dominated 2.06 37.50 16.67 

 

 

The classification of these classes was determined solely by the dominant class and 

detailed classes in the form of combination classes and mixed classes of the four benthic habitat 

types of bare substrate (BS), seagrass (Sg), coral (C) and macroalgae (M). The dominant class is 

a class with a PC value of a benthic habitat ≥ 80% or when the PC of other undescribed habitats 

≤ 20%. In this study, the dominant class is divided into three classes, namely the dominant class 

of seagrass (Sg Dominated), the dominant class of open substrate (BS Dominated) and the 

dominant class of macroalgae and coral (C + M Dominated). Coral and macroalgae classes are 

combined because most macroalgae in the study area are associated with coral reefs, so it is 

difficult to distinguish them. Besides that, the PC of macroalgae that stands alone is too small, 

causing the classification results to be less significant. The combination class is formed if there 

is a PC difference between classes of > 20% and each class has a PC of > 20%. This class is 

characterized by the addition (+) in the class name, such as the combination class of bare substrate 

and seagrass (BS + Sg). Meanwhile, a mixed class is formed if the classes have a PC difference 

of 20%. One example of this class is a mixed class between bare substrate, coral and macroalgae 

(Mix BS C M). 

One factor contributing to the suboptimal RF classification results is the influence of the 

background object in a pixel, specifically bare substrates (BS). For example, BS such as mud 

appear darker in images and may be misclassified as seagrass, while dead and destroyed coral 
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reefs may be misclassified as BS. The seagrass-dominated (Sg Dominated) class is 

underestimated, as the UA is 37.5% and the PA is 16.67%. This underestimation is due to the 

misclassification of seagrass as BS or a mixed seagrass class. Conversely, the BS Dominated 

class is overestimated, with a PA of 67.35% and a UA of 48.18%. The UA and PA values for the 

benthic habitat classification are detailed in Table 4. 

Although the classification results are moderately accurate, the derived benthic habitat 

distribution aligns well with actual field conditions, as evidenced by field survey results. The 

study area encompasses a total benthic habitat area of approximately 4.59km², predominantly 

consisting of BS Dominated (120.5ha) and C+M Dominated (156.77ha) classes. In contrast, the 

area dominated by seagrass occupies a much smaller area, approximately 2.06ha. The majority 

of seagrass in the study area is mixed with BS (115.42ha). 

 

Seagrass Species Composition Mapping 

The seagrass species composition map with the highest OA is 62.19%, achieved using the 

hyperparameters impurity = entropy, randomly selected features = square root and nTree = 200. 

This accuracy is lower than that observed in previous studies. For example, research by P. 

Wicaksono and W. Lazuardi [47] obtained a seagrass mapping OA of 70.37% using WorldView-

2 imagery, while Ariasari et al. [48] achieved an OA of 83.52-85.71% for seagrass species 

composition mapping using PlanetScope imagery and RF classification. 

Table 5 indicates that the ThCr and Ea classes are the most accurate, as indicated by their 

high UA and PA. This is likely because these classifications consist of a single life form with 

similar leaf morphology. In contrast, the EaTh classification appears significantly 

underestimated, with a UA of 25% compared to a PA of 5.88%. This discrepancy suggests that 

most EaTh samples are misclassified as either Ea or ThCr. A number of factors contribute to this 

discrepancy, including the relatively small sample size for the EaTh class. 

 
Table 5. Confusion matrix of seagrass species composition classification using RF.  

The highlighted columns indicate the number of reference data correctly classified 

 

Class 
Reference 

Total UA (%) 
Ea EaTh ThCr 

Ea 30 8 7 45 63.83 

EaTh 0 1 2 3 25.00 

ThCr 11 7 84 102 64.62 

Total 41 16 93 150  

PA (%) 68.83 5.88 66.14 OA (%) 62.19 

 

The misclassification of seagrass species composition mapping can be attributed to the 

similar reflectance values of seagrass species, particularly in the ThCr and EaTh classes, which 

complicates their distinction using random forest classification. In addition, the influence of 

background objects also accompanies the reflectance recorded by the sensor, which in this case 

is a bare substrate [49]. It is also possible that the shallow marine habitat maps produced 

previously were also affected by background objects in the form of open substrates that are more 

dominant and affect seagrass objects so that the percentage of seagrass cover for seagrass species 

composition mapping has been reduced. 

The seagrass cover area on Pari Island is approximately 115.42 ha, with the following 

composition classes: Ea (23.65ha), EaTh (5.89ha) and ThCr (85.88ha) (Fig. 4). 
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Fig. 4. Seagrass species composition map obtained from RF classification algorithm with OA 62.19% 

 

The distribution of seagrasses tends to be clustered in the northern part of the island, where 

Ea, Th and Cr species dominate and are heterogeneously distributed along the coast. The ThCr 

composition class is the most prevalent in the study area. The Ea species composition class is 

primarily found along the northern coast and the southern part towards the optical deep sea. The 

EaTh composition class, which includes all types of seagrass species, is mainly located in the 

northern region of the study area. These mapping results of seagrass species composition were 

utilized to create masks for each composition class, serving as boundaries for species-level AGC 

modeling. 

 

Seagrass AGC Mapping Model Development 

Table 6 presents the range of seagrass AGC, calculated based on the PC of each seagrass 

species in each field data. In this study, the species-level AGC was utilized, as each seagrass 

species has different capacities for carbon storage, influenced by differences in canopy cover and 

rhizome structure, which affect the potential for carbon sequestration [50]. 
 

Table 6. Seagrass PC and AGC calculation results 

 

Seagrass 

Species 

PC AGC (gC/m2) 

min max mean min max mean 

Ea 0.83 96.00 13.32 0.95 31.15 4.47 

Cs 1.00 4.00 0.03 1.55 1.76 1.58 

Th 0.83 92.00 16.13 0.20 9.93 3.00 

CrHu 0.83 81.00 7.36 0.005 4.72 0.34 

SiHo 0.83 11.00 0.10 0.0005 0.02 0.0001 

All species 0.83 99.00 37.06 1.09 31.15 9.44 

 

The AGC values of seagrasses, determined using species-specific equations, range from 

1092 to 31,148gC/m². Species Ea, a large species capable of growing to the water surface, has 

the highest average AGC due to its substantial size compared to species in other classes. Thalassia 

hemprichii (Th) typically grows in groups, either as a single species or mixed with others. Cr and 

Hu (CrHu) were analyzed together due to their similar morphology and life forms, with the 

primary visible difference being the shape of their leaf tips [41]. Although Si and Ho have 

different leaf shapes, their AGC values are almost identical, leading to combined AGC 
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calculations. Additionally, Si and Ho are smaller in size and occupy a limited area in the study 

site. Each seagrass species will be grouped by life form to form a species composition class. Ea 

species composition class consists of only one species, Ea, as the basis of AGC mapping. The 

ThCr species composition class consists of all seagrass species except Ea, while the EaTh 

composition class is a combined class of all seagrass species as the basis of its mapping. 

The RFR and SWR regression models for species-level seagrass AGC mapping were applied 

to the median composite Sentinel-2A image of April 2023. The model was applied separately for 

each seagrass species composition class. The best regression model was evaluated using RMSE. 

Table 7 indicates that the AGC regression model using the RFR model has the lowest RMSE in the 

Ea and ThCr species composition classes. Conversely, the SWR yields the EaTh AGC mapping 

model with the lowest RMSE. However, the difference in the RMSE values between the two 

regression models for each species composition class is minimal. For the Ea species composition 

class, the AGC RMSE values with the RFR and SWR models are 5.04gC/m² and 5.37gC/m², 

respectively. For the EaTh species composition class, the AGC RMSE values with the RFR and 

SWR models are 2.90gC/m² and 2.55gC/m², respectively. For the ThCr class, the AGC RMSE 

values with the RFR and SWR models are 1.99gC/m² and 2.0gC/m², respectively. 

 
Table 7. Accuracy assessment results of the seagrass AGC mapping 

 

Class Model Accuracy Assessment 

Result 

Model R2 Hyperparameter and Variable Importance for RFF 

/Regression function for SWR 

r R2 RSME 

(gC/m2) 

Ea RFR 0.15 Variable importance = All bands; green is a bit higher than 

red; red is a bit higher than blue; NIR is the lowest 

nTree = 50 

mtry = Square root all features 

Minimum number of sample in node = 5 

0.49 0.21 5.04 

SWR 0.18 AGCEa= 25.937 + (-64.944 Green) 0.39 0.16 5.37 

EaTh RFR 0.30 Variable importance = All bands; green is a bit higher than 

blue; blue is a bit higher than red; NIR is the lowest 

nTree = 300 

mtry = Square root all features 

Minimum number of sample in node = 10 

0.37 0.15 2.90 

SWR 0.23 AGCEaTh = 23.662 + (-69.433 Green) 0.34 0.17 2.55 

ThCr RFR 0.30 Variable importance = All bands; red is a bit higher than 

green; green is a bit higher than blue; NIR is the lowest 

nTree = 50 

mtry = 3 (by user) 

Minimum number of sample in node = 10 

0.5 0.24 1.99 

SWR 0.22 AGCThCr = 10.233 + (-61.053Green) + (42.880Blue) 0.45 0.19 2.06 

 

Previous research by P. Wicaksono et al. [51] demonstrated that the RFR model, when 

applied to WorldView-2 images of Kemujan Island and Labuan Bajo, achieved higher and more 

consistent accuracy than the SWR model. Contrastingly, another study by P. Wicaksono et al. 

[52] found that the SWR model outperformed the RFR model in mapping seagrass AGC in 

Labuan Bajo using Sentinel-2 imagery. These findings indicate that the suitability of regression 

analysis models can vary based on the type of imagery, sample characteristics, seagrass 

distribution and variation and research location [25]. Additionally, temporal factors must be 

considered when applying a regression model to multitemporal images. Environmental dynamics, 

such as seasonal or long-term changes, can alter the patterns of seagrass AGC. Seagrass AGC is 

influenced not only by the ecosystem itself but also by temporal environmental conditions, 

indicating that the accuracy of regression models can be time-specific. 

The RFR model for each species composition class produced higher r and R² values 

compared to the SWR model, with the exception of the R² value of the EaTh class. Nevertheless, 
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the discrepancies in r and R² values between the RFR and SWR models for each species 

composition class were not significant, indicating that the performance of the RFR and SWR 

models is relatively comparable. The low accuracy of SWR compared to RFR due to the use of 

linear regression is not suitable for AGC modeling using remote sensing. This is because factors 

such as biomass that influence AGC do not always show a linear relationship to remotely sensed 

vegetation structure. The RFR model results indicate that each seagrass species composition class 

requires different hyperparameter settings or combinations to achieve the optimal accuracy for 

the AGC regression model. J. Rui et al. [53] noted that there is no theoretical basis for determining 

the optimal hyperparameter values. The variation in hyperparameter settings leads to different 

accuracy values in each study, necessitating experimentation to identify the model that achieves 

the highest accuracy. 

The two regression models demonstrate comparable optimal bands for seagrass AGC 

across different species compositions. In the Ea and EaTh classes, the green band performed the 

best in modeling AGC using both RFR and SWR techniques. This finding is consistent with 

previous studies that have highlighted the green band's significant role in AGC modeling across 

various image types and regression methods [41]. This influence is largely attributed to seagrass 

AGC being affected by leaf area index and chlorophyll, as seagrasses exhibit sensitivity to 

wavelengths between 500-600nm, encompassing the green band [36, 54]. Conversely, the ThCr 

class is more influenced by the red band. Wicaksono et al. [36] observed that species such as Cr, 

Ho, Si and Th exhibited high spectral reflectance values at wavelengths between 755-884nm, 

with Ea species also demonstrating high reflectance. In general, the NIR band is also considered 

an important variable for mapping AGC, which is also shown from the important variables where 

NIR also contributes to each seagrass species composition class. The waters in the median 

composite Sentinel-2A image of April 2023 are receding, especially on the southern coast of Pari 

Island. Small seagrass species dominate the area, so they are still below the water surface even 

though it is receding. This results in better performance of the Red band in AGC ThCr than the 

NIR band due to the weakening of the water column. Meanwhile, the northern part of Pari Island, 

dominated by Ea species, has deeper water conditions because it is close to the lagoon and turbid 

water conditions result in lower NIR band performance. 

The variation in optimal bands for modeling the AGC of each species composition 

indicates that each species has a distinct spectral response sensitivity at specific wavelengths. For 

instance, species Ea exhibits a higher spectral response value than other species due to its denser 

PC and larger size [41]. However, AGC estimation errors for Ea species are common, often 

caused by the visual appearance of Ea cover in the image. In the images analyzed, the water 

conditions around the Ea species cover area were quite deep, so Ea was submerged in water and 

only the tips of the leaves were visible in the image's visual display. This condition led to an 

underestimation of the Ea AGC despite the species' high PC. In addition, because the data range 

of the Ea species composition class is wider, the accuracy of the AGC model for the Ea species 

composition class is smaller than the other classes. Additionally, the differing spectral responses 

of each species are influenced by their leaf area index (LAI), which is related to seagrass 

photosynthetic ability, chlorophyll content, shoot number and biomass [8, 54].  

Based on the 1:1 plot (Fig. 5), the distribution of data on modeled and reference seagrass 

AGC for RFR and SWR shows similarities across different seagrass species composition classes. 

The ThCr class exhibits a more clustered data distribution compared to the Ea and EaTh classes. 

Both regression models tend to underestimate AGC values at higher ranges. A significant 

limitation of remote sensing for AGC modeling is the saturation effect of an object's spectral 

response at specific densities. Saturation occurs when the signal intensity of the object is either 

too high for the sensor to detect slight differences in intensity [55] or too low. When seagrass 

AGC values reach high levels, the model may become unresponsive to further changes in AGC 
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due to increased energy absorption in dense seagrass patches. This modeling limitation causes 

the predicted AGC values to no longer reflect variations accurately. The EaTh species 

composition class that grows spaced and mixed with other species or substrates can affect the 

pixel value of the image, resulting in saturation. In the Ea species composition class itself, 

saturation can occur, one of which is due to the high biomass value and because the substrate in 

the area is not clean carbonate sand, but there are microbenthos that also absorb energy. In 

addition, epiphytes on the leaves and turbid water conditions can also cause saturation. High AGC 

values tend to saturate due to the strong absorption of energy by seagrasses [17], compounded by 

the absorption of energy by the water column. 

 

 

 
 

Fig. 5. The 1:1 plot between estimated and reference AGC for each species composition based on RFR and SWR 
 

In addition to saturation, seagrass background has an effect in the form of an open 

substrate that can affect seagrass reflectance values [17]. Image pixel values as modeling 

variables have spectral responses susceptible to seagrass and environmental conditions. This can 

affect the strength and weakness of energy absorption in the spectral response [56]. The low 

accuracy of the resulting AGC modeling can also occur due to the lack of sample size, especially 

for the EaTh species composition class, because it has a small PC distribution. The accuracy 

results also show that species variations affect the spectral response of images for AGC modeling. 

Differences in each species' size, number of leaves and leaf structure can affect variations in AGC 

values and seagrass reflectance values in remote sensing images [57]. 

 

Seagrass AGC Mapping Model Application 

The application of the RFR and SWR regression models produced a map of AGC in seagrass 

habitats, categorized by species composition classes, as illustrated in figures 6 and 7.  
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Fig. 6. Seagrass AGC map by species composition class in April 2023 using RFR with RMSEEa 5.04; EaTh 2.90; ThCr 1.99 

 

 
 

Fig. 7. Seagrass AGC map by species composition class in April 2023 using SWR with RMSE Ea 5.37; EaTh 2.55; ThCr 2.06 

 

The estimated AGC values for the Ea class range from 9.31 to 23.54gC/m², for the EaTh 

class from 9.43 to 18.07gC/m² and for the ThCr class from 2.66 to 10.55gC/m². This translates to 

total AGC estimates of 0.043 tons C for Ea, 0.007 tons C for EaTh and 0.044 tons C for ThCR. 

Conversely, the SWR mapping model indicates AGC values of 9.36 to 21.70gC/m2 for the Ea class, 

3.44 to 17.11gC/m2 for the EaTh class and 0.86 to 8.80gC/m2 for the ThCr class. Consequently, the 

total AGC estimates derived from the SWR model are 0.043 tons C for Ea, 0.003 tons C for EaTh 

and 0.045 tons C for ThCr, which collectively cover a seagrass area of 115.42ha. 

Based on the variation of AGC values in overall seagrass cover, the RFR model has 

slightly more variation in value than SWR. The difference between the estimated AGC value and 

the total estimated AGC of Ea and ThCr classes is not so large. However, quite different AGC 

estimates are shown in the EaTh class because of the lack of sample size for the EaTh class. SWR 

tends to be prone to overfitting and is very sensitive to variable selection and the order in which 

variables are included or removed from the model. The need for the required number of samples 

causes the SWR model to randomly select variables that match the modeled data without 

considering the match in the validation data. In addition, the EaTh class, a combination of all 

species in the study area, also affects the reflectance value of remote sensing image pixels, so the 

sensitivity of each regression model will be different. 

The AGC maps generated from the two regression models show quite similar visuals 

because the difference in AGC estimates between the two is not so large. In the Ea and EaTh 
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species composition classes, the difference between the two is less visible, with the distribution 

of AGC estimates being quite similar. Meanwhile, the difference in AGC estimates for the ThCr 

species composition class can be clearly marked by differences in color gradation. The AGC map 

based on RFR appears to have darker color gradations or higher AGC estimates than the AGC 

map based on SWR. While gradation levels differ, both models depict similar distributions of 

high AGC values primarily along the northwestern coast. ThCr seagrass is concentrated in the 

southwest, while Ea is more prevalent in the north, despite ThCr having a wider distribution. Size 

differences among species contribute to the variability in AGC estimates. For instance, Ea may 

have a higher AGC value than ThCr despite its lower coverage. The northeastern coast generally 

shows lower AGC estimates due to sparse and less dense seagrass compared to the western part. 

As seagrass density declines towards the deep sea, AGC values also decrease, influenced by 

growth patterns and tidal dynamics. 

 

Multitemporal Analysis of Seagrass AGC 

This study employed RFR and SWR mapping models with optimal hyperparameter 

settings to map and analyze the dynamics of seagrass AGC from April 2021 to December 2023, 

covering a period of 15 months with intervals of two to three months. Figures 8-10 illustrate the 

dynamics of changes in mean and total AGC by species composition for both regression models.  

 

 
 

Fig. 8. Average and total seagrass AGC of species composition class Ea 

 

 
 

Fig. 9. Average and total seagrass AGC of species composition class EaTh 

 

Based on the graph, there is an anomaly in the average dynamic pattern of AGC. The 

dynamics of AGC changes in the tropics typically reach a peak at the transition from the rainy 

season to the dry season [58]. Pari Island, part of the Thousand Islands archipelago located north 

of Jakarta, exhibits rainfall patterns similar to those observed in the capital city. The rainy season 

in the Thousand Islands spans from November to April, with peak rainfall occurring in January. 

From June to September, the region experiences the dry season, with the driest months usually 
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being July and August [59-60]. Given this information, an anomaly is observed in the average 

seagrass AGC pattern for January. 
 

 
 

Fig. 10. Average and total seagrass AGC of species composition class ThCr 

 

It is generally accepted that high rainfall has a negative impact on seagrass biomass. This is 

due to a number of interrelated factors, including increased sedimentation, decreased salinity, 

reduced light availability and physical damage to seagrass ecosystems [61]. It has been 

demonstrated that elevated rainfall enhances the flow of fresh water to the sea, which carries 

sediments that block sunlight, thus impeding seagrass growth. Additionally, decreased salinity and 

increased water turbidity further hinder seagrass by reducing water clarity and light penetration. 

Furthermore, high rainfall frequently results in increased cloud cover and algal blooms caused by 

eutrophication, both of which reduce light availability [62]. The intense water flow associated with 

heavy rainfall can also physically disrupt seagrass by uprooting or damaging the plants. The 

dynamics of AGC in seagrass exhibit a reasonably consistent pattern for Ea class. The RFR model 

indicates a decline in AGC in January 2021 and January 2023, with a peak in November. 

One significant factor contributing to the abnormal multitemporal AGC dynamics pattern 

is the variability in the quality of the images used. The 15 images employed in the analysis exhibit 

differing qualities, which influence the reflectance values essential for mapping. These variations 

are likely due to the presence of fog, clouds and sunglint, which leads to poor radiometric quality. 

This indicates that a median composite image does not consistently provide the best quality. 

Despite the use of median compositing, the quality of the resultant monthly image still fluctuates 

based on the condition of the individual images. To mitigate this issue, the single-date image with 

the lowest initial cover for that month should be utilized. Consequently, seagrass AGC data for 

January was excluded from this analysis due to limited availability of remote sensing imagery.  

The multitemporal seagrass AGC analysis revealed that the highest average total AGC 

peak for the RFR model occurred in October 2021, with a total carbon of 0.104 tons and for the 

SWR model in December 2023, with a total carbon of 0.105 tons. Conversely, the lowest average 

total AGC was recorded in November 2022 for the RFR model, with a total of 0.092 tons of 

carbon and in April 2023 for the SWR model, with a total of 0.091 tons of carbon. The monthly 

average of seagrass AGC based on the RFR is 17.85gC/m² for the Ea class, 11.90gC/m² for the 

EaTh class and 5.76gC/m² for the ThCr class. For SWR, the average is 18.83gC/m² for the Ea 

class, 8.03gC/m² for the EaTh class and 5.73gC/m² for the ThCr class. The average total AGC 

for 15 months, based on RFR, is 0.04 tons for the Ea class, 0.01 tons for the EaTh class and 0.05 

tons for the ThCr class. The SWR indicates that the average total AGC is 0.04 tons for the Ea 

class, 0.005 tons for the EaTh class and 0.05 tons for the ThCr class. These results demonstrate 

that there are no significant differences in AGC across all species composition classes in both 

regression models. 

Each species composition class exhibits different estimates of the highest and lowest AGC. 

Among these, the Ea class demonstrates a more consistent pattern of AGC dynamics compared 
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to other species composition classes. This stability can be attributed to several factors, including 

robust root systems, superior storage capacity, resistance to environmental stress, consistent 

growth and effective vegetative reproduction. These characteristics enable large seagrass species, 

such as Ea, to maintain more stable AGC dynamics [61]. In contrast, smaller seagrass species 

generally respond more rapidly to environmental changes and exhibit faster growth rates [61]. 

However, their smaller size also makes them more susceptible to environmental fluctuations, 

resulting in more variable seagrass biomass dynamics compared to larger species [62]. This 

variability is evident in the multitemporal AGC dynamics pattern of the ThCr class, which is 

more dynamic than the relatively stable Ea class. 

The AGC dynamics pattern for the EaTh class appears consistent in the RFR model, but 

unstable in the SWR model. The EaTh class, representing all species on Pari Island, typically 

exhibits stable monthly biomass dynamics [63]. This class comprises various-sized seagrasses, 

forming a complex composition. Smaller seagrasses, such as ThCr, tend to dominate certain areas 

more rapidly under optimal conditions, while larger seagrasses provide long-term stability [62]. 

The different seagrass species complement each other in terms of ecosystem functions, including 

carbon sequestration, environmental stress tolerance and nutrient cycling. Consequently, 

fluctuations in seagrass AGC may be mitigated as some species continue to function optimally 

under changing conditions, thereby reducing large variations in total carbon stocks. The 

significant difference in EaTh class AGC dynamics between the RFR and SWR models may be 

attributed to SWR's limited capability in mapping AGC. The SWR model's simpler variable 

selection approach and assumption of linearity result in a failure to capture the complex dynamics 

present in the data, in comparison to the RFR model [64]. This results in the AGC dynamics of 

the SWR model being lower and more variable than those of the RFR model for the EaTh species 

composition class. 

Figures 11 and 12 illustrate the AGC map for the 15 median composite Sentinel-2A 

images from April 2021 to December 2023.  

These maps reveal monthly variations and dynamics in AGC changes. The seagrass AGC 

map derived from the RFR method exhibits more pronounced dynamics, as indicated by its 

diverse color gradations each month. In contrast, multitemporal AGC maps based on the SWR 

method display more monotonous color gradations. Specifically, the SWR-based maps 

predominantly show darker color gradations along the west and south coasts of Pari Island. 

Additionally, the species composition of the Ea and EaTh classes in the SWR-based AGC maps 

demonstrates less variation in color gradation. It is noteworthy that the EaTh class exhibits 

changes in color gradation in the eastern part of Pari Island, which indicates AGC dynamics in 

that region. 

From June 2021 to August 2021, there was an increase in the AGC estimates for the Ea 

and ThCr classes. However, in October 2021, the AGC estimate for the Ea class decreased before 

increasing again in March 2022. The AGC dynamics for the RFR model are further illustrated in 

the AGC map from November 2022 to April 2023, which indicates a rise in AGC estimates. Both 

models demonstrate a decline in AGC estimates from March 2022 to August 2022, coinciding 

with the onset of the dry season. August is the driest month, as indicated in [59]. 

The resulting multitemporal AGC maps demonstrate that Sentinel-2 imagery is generally 

effective for AGC mapping and multitemporal analysis. Utilizing monthly median composites 

helps mitigate disturbances such as cloud cover or noise [33]. However, even with median 

composites, Sentinel-2 imagery does not consistently provide high-quality data, as evidenced by 

the anomaly in the multitemporal AGC results for January. Additionally, RFR and SWR models 

can effectively and consistently capture AGC dynamics. Although the results indicated that the 

RFR model generally performs better, this superiority may not apply to all months. The SWR 

model could be preferable in specific months, considering that the variations in multitemporal 

AGC maps from RFR and SWR are not significantly different.  
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Fig. 11. Map of multitemporal seagrass AGC based on RFR 
 

 



J. WIJAYA et al.  

 

 

INT J CONSERV SCI 16, 2, 2025: 1167-1194 1184 

 

Fig. 12. Map of multitemporal seagrass AGC based on SWR 
 

 

Environmental Factors Influencing Seagrass AGC dynamics 

The dynamics of seagrass AGC are predominantly influenced by the growth and 

photosynthesis processes of seagrass. These processes are responsive to environmental 

fluctuations, including changes in temperature, salinity and chlorophyll concentration [44]. 
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Furthermore, various factors impact seagrass AGC dynamics, such as the availability of sunlight, 

rainfall patterns and nutrient levels [65]. The seasonal fluctuations in seawater pH, which range 

from acidic to alkaline, serve as indicators of seagrass presence and growth [66]. Furthermore, 

chlorophyll concentration serves as a marker for identifying eutrophication [44]. In this study, 

pH value and chlorophyll concentration are the biochemical variables utilised for correlation 

analysis with AGC dynamics, while rainfall, sea surface temperature and salinity are the physical 

variables considered for analysis. 

The data presented in Table 8 indicates rainfall exhibit significant correlations with 

seagrass AGC. However, not all classes of species composition display significant correlations 

between AGC and the environmental factors under consideration. For instance, the AGC from 

the RFR model and the AGC of the Ea class from the SWR model does not show a significant 

correlation with any of the factors examined. The strongest correlation is observed in the rainfall 

variable, with a correlation coefficient of 0.696 for the AGC of ThCr class from SWR model. 

Rainfall is an environmental factor affecting the availability of light and seawater temperature 

related to seagrass growth [65]. When rainfall increases, light and seawater temperatures will 

decrease due to increased cloud cover and sediment suspension that can rise due to terrestrial 

runoff. 

 
Table 8. Correlation analysis results between seagrass AGC dynamics and environmental factors.  

 

Environmental 

Factors 

RFR SWR 

Ea EaTh ThCr Ea EaTh ThCr 

pH -0.465 0.081 0.353 -0.216 0.097 -0.163 

Chlorophyll -0.511 0.380 0.343 -0.024 0.144 -0.218 

Rainfall 0.417 0.086 -0.127 0.527 0.665* 0.696* 

Salinity 0.361 0.174 -0.117 0.290 0.197 0.176 

Sea Surface 

Temperature (SST) 
0.047 0.093 -0.178 0.108 0.025 -0.067 

*Significant at 0.05 

 

Figure 13 shows a comparison graph between the multitemporal mean AGC and 

biophysical variables. Based on the graph, the relationship between AGC and pH (Fig. 13a), 

chlorophyll concentration (Fig. 13b), SST (Fig. 13c) and salinity (Fig. 13d) is less visible. The 

correlation results show that only the rainfall variable has a correlation with the multitemporal 

AGC. This can be seen from the pattern shown in the comparison graph of AGC and rainfall (Fig. 

13e). The rainfall variable shows a reasonably high influence on seagrass AGC, where most of 

the average seagrass AGC follows the dynamic rainfall pattern. The highest rainfall was in 

December 2023 and seagrass AGC also increased. However, this is inappropriate with a general 

dynamic pattern of AGC because, usually, the AGC decreases when rainfall is too high, as shown 

by the AGC class Ea for the RFR model. This anomaly is caused by inconsistent image quality 

due to disturbances like cloud cover or fog. 

Although other biophysical variables did not show a significant correlation with 

multitemporal AGC data, biophysical variables such as pH, chlorophyll concentration, salinity 

and SST can generally affect seagrass AGC dynamics [65-68]. Several factors cause the 

correlation between these biophysical variables and the modeled multitemporal AGC data to be 

less significant. Some include temporal and spatial variations, complex interactions between 

influential factors and various seagrass species [69-73]. Spatial and temporal variations in 

biophysical parameters, such as slight differences between SST data collection stations, may 

affect the correlation with seagrass AGC data. Variability in seagrass AGC may occur on such a 

small scale that it is not captured in the sampling design [71-73]. In addition, seagrasses need 

time to respond to changes in biophysical variables. It is possible that measurements of 
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biophysical variables were taken at a different time than seagrass AGC measurements or there 

was a lag time in response. So, less representative sampling can lead to less significant results.  

 

    
(a)   (b) 

    
 (c)  (d) 

 

 
(d) 

 

Fig. 13. Map of Multitemporal Seagrass AGC based on Stepwise Regression 
 

The complex interactions between each biophysical variable and various seagrass species 

and other factors, such as external disturbances, can affect the correlation results with AGC data 

[71, 73]. Seagrass ecosystems are complex systems with many interactions between biotic and 

abiotic variables. Biophysical variables such as salinity, pH, chlorophyll concentration and 

temperature can be influenced by various other unmeasured or uncontrollable variables. In 

addition, different seagrass species have different storage capacities and responses to 

environmental conditions [44]. Some seagrass species are more resistant to environmental 

changes, so fluctuations in biophysical variables may not be directly visible in seagrass AGC 

[74]. Heterogeneity in seagrass communities can make it difficult to see relationships between 

biophysical variables and seagrass AGC by species composition class. 

 

Importance of Seagrass Time Series for Conservation 

Monitoring the seagrass PC and AGC is necessary for comprehending changes and 

undertaking carbon inventories. Seagrasses exert a significant global influence by bolstering food 

security, mitigating climate change and fostering biodiversity [70, 75]. Despite conservation 

efforts, seagrass meadows face mounting pressures from both natural forces and human activities, 

resulting in degradation and functional loss [76]. The implementation of effective management 

strategies is of paramount importance if seagrass coverage is to be restored and their pivotal role 

in coastal marine ecosystems is to be amplified. One such strategy is the establishment of 
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conservation zones [68]. The maintenance of up-to-date information on seagrass PC and AGC is 

essential if efficacious and sustainable conservation efforts are to be ensured and if global climate 

change challenges are to be addressed. Maps delineating seagrass PC and AGC assist in the 

evaluation of the health of seagrass ecosystems. The implementation of continuous monitoring 

enables the early detection of any changes or degradation to the habitat, which is highly important 

for the prompt implementation of conservation interventions [77]. 

The determination of conservation areas can be facilitated by utilizing the coefficient of 

variation (CV) values derived from multitemporal AGC maps. In order to identify locations on 

Pari Island characterised by relatively stable AGC levels, an analysis of AGC coefficient of 

variation was conducted. A higher coefficient of variation indicates greater temporal variability 

in seagrass AGC. Variations exceeding 30% are deemed less suitable for inclusion in 

conservation areas [78]. Such high variations, whether resulting from natural causes such as 

disasters or human activities, have the potential to disrupt natural habitats. Conservation areas 

necessitate stable ecosystems to uphold robust biodiversity and ensure the survival of protected 

species. Frequent fluctuations can upset ecosystem equilibrium and pose threats to the species 

inhabiting them. Moreover, excessive environmental variation can hinder the ability of some 

species to adapt swiftly, thereby elevating the risk of local extinction [79].  
The analysis of the resulting CV map reveals that a significant portion of the seagrass 

cover on Pari Island is suitable for conservation purposes (Fig. 14). When examining the CV map 

derived from time-series seagrass AGC maps, it becomes evident that the highest values are 

attributed to the Ea class at 31%, the EaTh class at 24% and the ThCr class at 37% over a span 

of 15 months. This distribution of CV values indicates that the EaTh species composition class 

exhibits a comparatively higher level of stability, as evidenced by its CV range remaining below 

30%. It is noteworthy that different species of seagrass respond diversely to environmental factors 

such as temperature, salinity and nutrient availability [63]. Consequently, areas covered by 

various species can mitigate the overall variability of carbon stocks. This is due to the likelihood 

that certain species will continue to function optimally despite changing conditions, thus 

minimizing the occurrence of strong fluctuations in the AGC. 

 

 
 

Fig. 14. Coefficient of variation (CV) map based on multitemporal seagrass AGC maps. 

Lower values indicate stable seagrass AGC across 2021-2023 and vice versa 
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The ThCr class exhibits greater variation than the Ea class, largely due to differing 

responses to environmental changes. The ThCr class typically exhibits faster growth rates but is 

also more vulnerable to fluctuations in environmental conditions [80]. Conversely, the large-size 

Ea species demonstrate slower growth rates but greater resilience to drastic changes [81]. 

Although the maximum CV exceeding 30% for both the Ea and ThCr classes exists, most seagrass 

areas maintain values below 30%. Higher CV values are observed in areas closer to the mainland 

along the coast. Consequently, alongside the environmental factors influencing seagrass 

dynamics, human accessibility can impact the stability of seagrass AGC. This is because 

seagrasses situated in close proximity to the shoreline may be subjected to heightened exposure 

to anthropogenic influences or competition for growth with algae [82]. 

 

Conclusions 

 

A mapping model for seagrass AGC at the species composition level, utilizing Sentinel-2 

images, has been successfully developed. The results demonstrated that the RFR model exhibited 

greater accuracy in AGC mapping compared to the SWR model. When applied to multitemporal 

AGC mapping on Pari Island, the RFR-based model revealed average monthly AGC values of 

17.85gC/m2 for the Ea class, 11.90gC/m2 for the EaTh class and 5.76gC/m2 for the ThCr class. 

Conversely, the SWR-based model yielded average AGC values of 18.83 gC/m2 for the Ea class, 

8.03gC/m2 for the EaTh class and 5.73gC/m2 for the ThCr class, which were relatively 

comparable to the RFR results. However, certain multitemporal AGC map outputs, notably those 

from January, were deemed unrepresentative due to poor image quality. This anomaly in AGC 

dynamics can be attributed to the varying quality of images used over a 15-month period, which 

impacted the reflectance values. Furthermore, external factors such as rainfall also influence AGC 

dynamics. Higher rainfall is generally associated with increased AGC estimates, as observed in 

December 2023. Finally, the low CV of AGC across all species composition classes indicates that 

most of the seagrass areas on Pari Island are suitable for conservation efforts. 
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