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Abstract  

 

Wetlands sequester substantial carbon due to their unique biogeochemical soil properties, yet 

they can emit significant carbon dioxide (CO2), especially in the context of climate change. 

This study examined the complexity of CO2 emissions from two distinct soil types in a natural 

wetland area formed along the Dambovita River. The results revealed significant positive 

correlations between CO₂ emissions and both soil temperature (r=0.813; p<0.01) and air 

temperature (r=0.793; p<0.01) at the SC location, while emissions peaked at 0.7282 g m⁻² h⁻¹ 

in SP following flooding, demonstrating distinct emission patterns driven by environmental 

factors. Extrapolation of CO2 emissions highlighted the importance of accounting for 

environmental uncertainties. Therefore, adjusting the monthly mean values yielded a more 

precise depiction of emissions by including day/night variations. Regression models 

predicting future CO2 emissions based on meteorological and physical parameters showed 

that multiple predictor models explained more variance in CO2 emissions. The investigation 

of these interactions improves predictions of CO2 fluxes from wetlands and their impacts on 

climate change, contributing with a higher level of confidence to the GHG emissions 

inventory. 

 

Keywords: Greenhouse gas; Soil respiration; Chambers; Climate change; Temperature;  

                  Soil moisture 

 

 

Introduction  

 

Climate change is a global problem, with increasingly severe implications for the 

environment. A critical component of this issue is the role of wetland ecosystems and their soils 

in the carbon cycle, as these unique environments can act both as sources and sinks of 

greenhouse gases, significantly influencing atmospheric carbon dioxide (CO2) concentration [1, 

2]. Wetlands are renowned for their remarkable ability to sequester and store significant 

amounts of carbon, a process mediated by the unique biogeochemical characteristics of their 

soils [3, 4]. However, the same soils can also serve as a significant source of CO2 emissions, 

particularly in response to the negative effects of climate change [5]. As global temperatures 

rise, the delicate balance of wetland ecosystems is disrupted, which can lead to accelerated rates 
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of decomposition, altered vegetation growth patterns and changes in microbial community 

dynamics. These are triggers that can contribute to increased CO2 emissions from wetland soils 

[6, 7]. Given this complexity, this study aims to analyse the complex interaction between 

wetland soils and climate change which has profound implications for mitigation efforts. The 

study seeks to support policy development efforts to preserve these essential ecosystems in the 

context of climate change [8]. 

Also, understanding the complex relationship between CO2 emissions and 

meteorological parameters is crucial to addressing the global challenge of climate change [9-

11]. The exchange of CO2 in wetland soils is intricately linked to various meteorological 

parameters and the moisture regime, which significantly impact the rates of greenhouse gas 

emissions. Meteorological parameters such as temperature and precipitation play a vital role in 

regulating the biogeochemical processes occurring in wetland soils [12, 13]. Temperature 

influences microbial activity and decomposition rates, affecting the release of CO2 into the 

atmosphere. Precipitation patterns determine the water table level and soil moisture content, 

which in turn influence the availability of oxygen and nutrients for microbial processes. 

The moisture regime of wetland soils, characterized by fluctuations in water table depth 

and soil saturation, is a key determinant of greenhouse gas emissions [14, 15]. Waterlogged 

conditions create anaerobic environments that promote methanogenesis, resulting in the 

production and release of methane [16, 17]. Conversely, fluctuations in water table levels can 

lead to periods of aerobic conditions, favouring CO2 emissions through microbial respiration 

[18]. Understanding the complex interplay between meteorological parameters, moisture regime 

and greenhouse gas emissions from wetland soils is essential for accurately assessing the carbon 

balance of these ecosystems. 

This study focuses on investigating these interactions with the aim of improving 

predictions of CO2 flows from wetlands and their impact on climate change, contributing to a 

higher level of confidence in the inventory of GHG emissions. 

How these factors interact and influence the dynamics of CO2 emissions improves 

prediction models of greenhouse gas fluxes from wetlands and anticipates their impact on 

global climate change. Also, another objective is to highlight the importance of accounting for 

environmental uncertainties in the extrapolation of emissions, with corrected monthly means 

providing a more accurate representation of emissions by including day/night variations. 

 

Materials and methods 

 

In the peri-urban area of Bucharest, wetlands have naturally formed along the 

Dambovita river. Thus, according to figure 1, two locations (SC and SP) were chosen for 

monitoring CO2 emissions and were selected based on the identified vegetation type and soil 

flooding regime. Also, in the study area, two types of soil were identified: potentially flooded 

soil and flooded soil, but also two types of vegetation species, Cattails and Phragmites 

australis. The SC location is situated in the drainage area of the Dambovita River, in the 

upstream part and is covered in Cattails vegetation. From a water management standpoint, this 

soil has the potential to flood, however, it was not submerged by river waters during the 

monitoring period. The SP location is positioned downstream and is characterized by vegetation 

predominantly of the Phragmites australis species. It had a varied soil moisture regime 

throughout the year; thus, in the first part of the year, between January and July, it presented the 

characteristics of drained soil and after August until December, it was flooded. The two selected 

locations represent contrasting hydrological regimes and dominant wetland species effectively 

capturing key soil moisture variations and plant interactions influencing CO₂ emissions, making 

the findings relevant to similar temperate wetlands. 
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Fig. 1. The location of the study plots: SC (44°27'59"N 25°58'54"E) and SP (44°27'41"N 25°59'51"E) 

 

The approach for measuring the fluxes from the soil-atmosphere interface is to measure 

CO2 concentrations within a closed, opaque chamber with a specific surface area. The EGM-5 

portable CO2 gas analyser was used to monitor CO2 emissions, specifically the difference in 

CO2 concentration between entering and leaving the chamber through recirculation. Its main 

features are a volume of 1171mL and a covering area of 78cm2 [19]. This closed chamber 

method captures the dynamics of CO₂ emissions in situ, offering reliable real-time data. 

However, some limitations of this method include potential alterations to natural air exchange, 

as the chamber traps the air, possibly leading to small microclimatic changes. Also, the short-

term measurements might miss transient emission peaks, especially after rain events or soil 

disturbances, thus introducing some variability in results. 

The method was applied in-situ in the research area during the year 2022, with 

measurement sessions occurring at least once a month. Monthly intervals were chosen to 

capture broader seasonal trends, but such frequency may not fully account for short-term 

fluctuations driven by rapid changes in local variables. 

Field measurements, laboratory analyses and meteorological observations were all 

employed to examine the variables influencing CO2 emissions. Field experiments also involved 

measuring physical parameters such as air (Tair), top-soil temperature (Tsoil) and soil moisture 

(Msoil) at 0-20cm. To further emphasize the impact of precipitation on CO2 emissions, it was 

investigated if this effect is amplified over time and thus the correlation of CO2 emissions with 

cumulative precipitation over seven days was chosen. To determine the soil quality parameters, 

soil samples were collected from each plot in May, at 15 and 30cm depths and laboratory 

analyses focused on pH, nutrient levels (N, P), organic carbon (Corg (%)) and soil humus.  

The SPSS 29.0 software was used for factorial analysis. The Pearson correlation product 

was also analyzed to examine the impact of parameters on the variability of CO2 emissions, 

while simple and multiple regression analysis were used to test and validate the CO2 emission 

models. 
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Results and discussion 

 

In order to characterise the soils in each location, soil samples were collected after 

identifying two types of vegetation and distinct water management regimes in which the soil 

was likely to change. Table 1 shows the results for soil quality indicators at 15 and 30cm 

depths.  
 

Table 1. Soil physiochemical features by depth and sample plot 
 

  SC  SP 

Indicator 15cm 30cm 15cm 30cm 

pH unit pH (°C) 7.06/23.3 7.42/23.3 6.21/23.3 7.49/23.3 

Ntotal (%) 0.433 0.488 0.074 0.008 

Ptotal (%) 0.083 0.058 0.072 0.082 

Corg (%) 2.13 2.74 1.95 6.38 

Humus (%) 3.67 4.73 3.37 11 

 

Soil pH values at the SC location at a depth of 15cm indicate a slightly alkaline 

condition [20], however, at a depth of 30cm, the pH increases to 7.42, suggesting a further shift 

towards alkalinity [20]. In the SP location, at a depth of 15cm, the soil pH is lower with a value 

of 6.21, indicating a more acidic condition compared to the SC location. However, like the SC 

location, as the soil horizon reaches to 30cm, the pH increases significantly to 7.49. In SC, at a 

depth of 15cm, Ntotal is 0.433% and Ptotal is 0.083%, indicating a moderate level of nitrogen and 

phosphorus content [21], but as the soil horizon reaches to 30cm, Ntotal increases to 0.488, while 

Ptotal decreases to 0.058%, suggesting a slight increase in nitrogen concentration and a decrease 

in phosphorus concentration with depth. In SP, at a depth of 15cm, both Ntotal and Ptotal are 

substantially lower than in SC, with a value of 0.074% and 0.072%, respectively. At a depth of 

30cm, Ntotal further decreases to 0.008%, which may be indicative of nitrogen leaching, where 

nitrogen compounds are washed through the soil profile, while Ptotal increases slightly to 

0.082%. In SC, at a depth of 15cm, soil organic C is 2.13%, indicating a moderate level of 

organic carbon content [22]. At the same time, the humus content is 3.67%, which suggests a 

moderate level of humus accumulation [23]. At 30cm, organic C increases to 2.74% and humus 

content increases to 4.73%. This suggests an increase in both organic carbon and humus 

concentration by depth. At a soil depth of 15 cm, organic C is slightly lower at 1.95% than in 

the SC location and humus content is 3.37%. However, 30cm, both organic C content and 

humus content increase significantly, with organic C reaching 6.38% and humus content 

reaching 11%. This abrupt increase in both organic C and humus content with depth in SP 

suggests a higher rate of organic matter accumulation or preservation processes [24] compared 

to SC location. 

CO2 emissions measured in-field 

Figure 2 depicts CO2 emissions from the soil in SC location in the context of 

temperature variations (Tair and Tsoil values), as well as soil moisture (Msoil) corresponding to the 

monitoring days related to each month.  It was observed that the values of CO2 emissions and 

temperatures follow an increasing trend of dependence along the series of measurements; thus, 

at Tair and Tsoil that exceed 20°C (May-August), CO2 emissions tend to increase considerably, 

with values up to 0.5871g·m-2·h-1. Also, the lowest temperature values recorded during the 

measurements, between 3.5°C and 5°C for Tair and 3.5°C and 6.7°C for Tsoil, also correspond to 

the lowest values recorded for CO2 emissions, with the lowest emissions observed in this area 

being 0.0918g·m-2·h-1 in January. The minimum and maximum values for each of the two 

variables indicate the dependency of CO2 emissions on Msoil. Thus, low Msoil percentages of 
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22.6-24.8% resulted in the lowest emissions values, also recorded in January. Similarly, at the 

highest Msoil level of 50.75%, a value of 0.5715g·m-2·h-1 was measured. 

 

 
 

Fig. 2. The variation of CO2 emissions depending to the temperatures and soil moisture in SC 
 

To emphasise the dependence relationship between CO2 emissions and the key physical 

factors at the SC location, statistical analysis was carried out employing the Pearson correlation 

product and linear regressions to examine how well each variable could predict CO2 emissions 

values (Table 2). A strong positive and significant correlation [24, 25] proved to be in relation 

to Tair (r = 0.602; p < 0.01) and Tsoil (r = 0701; p < 0.01). Also, significant positive correlation 

with Msoil (r = 0.689; p < 0.01) and Precipitation (Pp) (r = 0.808; p < 0.01) over a seven-day 

period has been found. Wind speed, however, exhibits a weak negative correlation, although 

this is not statistically significant. The regression equations for predicting CO2 emissions from 

the physical parameters analysed suggest that higher temperatures increase CO2 emissions by 

79.7% for Tair and by 74.7% for Tsoil. Precipitation plays a crucial role in predicting CO₂ 

emissions, as shown by the strong correlation (r = 0.808, p < 0.01) and high explanatory power 

(R² = 0.813). This is likely because SC's soil, though potentially flooded, is not continuously 

submerged, making CO₂ emissions highly sensitive to precipitation-driven changes in soil 

moisture and oxygen availability for microbial activity. 

 
Table 2. Pearson correlation and linear regression of CO2 emissions and the main physical parameters in SC 

 

Variable r R2 Regression Equation p Value 
Tair 0.602* 0.797 y = 0.018x <0.001 
Tsoil 0.701** 0.747 y = -6.382*10-2-4.605*10-2x-1.0449*10-3 x2 <0.001 
Msoil 0.689* 0.742 y = --0.17-9.841*10-3x+3.139*10-4x2 <0.001 
Pp (7 days) 0.808* 0.813 y = 0.165+9.0621*10-3x+6.1754*10-4x2 <0.001 
Wind speed -0.396 0.439 y = 0.511x-0.826 0.255 
* Correlation is significant at the 0.05 level (1-tailed). 

** Correlation is significant at the 0.01 level (1-tailed). 

 

Figure 3 shows CO2 emissions from the soil in the SP location and how the key physical 

parameters affect them. Tair and Tsoil values generally coincide with the increase in CO2 

emission values, as in the case of the SC location. However, the relationship is strongly 
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dependent on temperature, but other factors like soil moisture (Msoil) also play a significant role. 

Considering the change in the moisture regime of the SP location (Figure 4), until August, the 

values of CO2 emissions were influenced by the evolution of Msoil, so that, at a minimum soil 

moisture of 12.9% and 16.6%, recorded emission values of 0.076 and 0.147g·m-2·h-1, 

respectively, representing the lower extremes of the variation. The second part of the results 

from the series of measurements was no longer included for the Msoil values since the soil 

moisture regime had changed the location into a flooded area. 

Thus, in August, when the moisture regime suddenly changed, the maximum peak in 

CO2 emissions of 1.3755g·m-2·h-1 was observed, which was caused by ecosystem disruption 

and, implicitly, by an acceleration of CO2 emissions from soil. Furthermore, while the area 

remained flooded after this month, emission data showed a decreasing pattern, indicating that 

the carbon sequestration capacity in the flooded soils is favourable, according to the IPCC 

Guidelines [26]. 

 

 
 

Fig. 3. The variation of CO2 emissions depending to the temperatures and soil moisture in SP 

 

 
Fig. 4. The temporal distribution of soil moisture (Msoil) at the SP location 
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As the soil transitions to a flooded regime, temperature and soil moisture become more 

dominant predictors of CO₂ emissions (r = 0.862 for Tair, r = 0.871 for Msoil, p < 0.01). Here, 

precipitation plays a lesser role because the area is saturated, reducing the immediate impact of 

rainfall on soil gas exchange. This is also supported by the statistically significant regression 

equations for Tair, Tsoil and Msoil, indicating that these variables have a predictive relationship 

with CO2 emissions.  
 

Table 3. Pearson correlation and regression of CO2 emissions and the main physical parameters in SP 
 

Variable r R2 Regression Equation p Value 

Tair 0.862** 0.896 y = 0.446-6.26*10-2x+2.474*10-3x2 <0.001 

Tsoil 0.852** 0.843 y = 0.497-7.836*10-2x+3.533*10-3x2 <0.001 

Msoil 0.871** 0.841 y = 0.854-6.569*10-2x+1.373*10-3x2 <0.001 

Pp (7 days) 0.074 0.005 y = 0.228+0.002x 0.397 

Wind speed 0.475 0.003 y = 0.141x 0.427 

** Correlation is significant at the 0.01 level (1-tailed). 

 

Extrapolation of CO2 emissions  

The extrapolated monthly mean emissions for SC and SP locations along with standard 

deviations (SD), 95% confidence intervals and confidence coefficients are presented in Table 4. 

The variation across the year was significant for both locations. In SC location, the emissions 

range from 2.326g·m-2·d-1 in January to 13.564g·m-2·d-1 in May, while in SP location, emissions 

range from 1.540g·m-2·d-1 in December to 31.604g·m-2·d-1 in August. The 95% confidence 

intervals are relatively narrow for all months, suggesting precise estimates of the mean CO2 

emissions. These narrow intervals provide confidence in the predictive accuracy of the models, 

as they suggest that the observed data closely represent actual emissions under similar 

environmental conditions. The confidence coefficients are all around 64-65%, indicating that 

the data is moderately reliable.  
 

Table 4. Extrapolated mean CO2 emissions, based on models derived from data measured in-situ 
 

Location Month 

CO2 emissions 

(g·m-2·d-1) 

95% Confidence interval      

(g·m-2·d-1) Confidence 

coefficient Mean SD Lower limit Upper limit 

 Jan 2.326 0.039 2.311 2.340 64.35% 
 Feb 3.199 0.038 3.184 3.214 64.46% 
 Mar 2.484 0.056 2.463 2.504 64.35% 
 Apr 3.116 0.053 3.097 3.136 64.39% 
 May 13.564 0.209 13.487 13.641 65.38% 

SC Jun 13.549 0.111 13.508 13.591 64.39% 
 Jul 12.902 0.137 12.852 12.953 64.35% 
 Aug 6.523 0.037 6.509 6.536 64.35% 
 Sep 7.055 0.100 7.018 7.093 64.39% 
 Oct 5.807 0.070 5.781 5.833 64.35% 
 Nov 9.064 0.152 9.007 9.121 64.39% 
 Dec 4.394 0.080 4.365 4.423 65.38% 

 Jan 1.925 0.032 1.914 1.937 64.35% 
 Feb 3.687 0.044 3.670 3.704 64.46% 
 Mar 4.726 0.107 4.686 4.765 65.38% 
 Apr 4.852 0.083 4.822 4.883 64.39% 
 May 6.843 0.106 6.804 6.882 65.38% 

SP Jun 8.016 0.006 8.013 8.018 64.39% 
 Jul 10.186 0.108 10.146 10.226 64.35% 
 Aug 31.604 0.180 31.538 31.670 64.35% 
 Sep 2.643 0.037 2.629 2.657 64.39% 
 Oct 3.768 0.045 3.751 3.784 64.35% 
 Nov 4.317 0.073 4.290 4.344 64.39% 
 Dec 1.540 0.028 1.530 1.550 65.38% 
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Further analysis explored the hypothesis that considers the day and night average 

variation. The monthly CO2 emissions were corrected and adjusted, considering the differences 

in emissions between day and night, as shown in Table 5. The corrected mean CO2 emissions 

show notable differences in monthly emission patterns compared to the initial values (Table 4). 

Figure 5 shows that in location SC, emissions peak in June at 22.582g·m-2·d-1, suggesting 

increased biological or environmental activity, while August presents a significant decrease to 

7.708g·m-2·d-1. In contrast, location SP experiences the highest emissions in August at 

37.350g·m-2·d-1, indicating an intense period of CO2 release. Both locations exhibit generally 

higher confidence coefficients around 73-76%, indicating more consistent data under the 

hypothesis of diurnal variation.  
 

Table 5. Extrapolated mean CO2 emissions based on the hypothesis  

that considers the day and night variation 

 

Location SC SP 

Month 
Corrected 

Mean 

Confidence 

coefficient 

(%) 

Corrected 

Mean 

Confidence 

coefficient 

(%) 
Jan 1.661 73.27 1.375 73.27 
Feb 2.707 76.03 3.120 76.03 
Mar 2.484 73.27 4.726 74.03 
Apr 3.683 73.29 5.735 73.29 
May 18.990 74.03 9.580 74.03 
Jun 22.582 73.29 13.359 73.29 
Jul 18.063 73.27 14.260 73.27 

Aug 7.708 73.27 37.350 73.27 
Sep 7.055 73.29 2.643 73.29 
Oct 4.914 73.27% 3.188 73.27% 
Nov 6.474 73.29% 3.083 73.29% 
Dec 2.636 74.03% 0.924 74.03% 

 

 
Fig. 5. Comparison of extrapolated CO₂ emissions based on data measured 

in-situand corrected means based on day and night variation 

 
Understanding the seasonal and local variability of CO2 emissions is vital to reduce the 

uncertainties for monitoring of environmental health and changes over time and contributes to 

broader models and predictions regarding climate change. Thus, the boxplot from Figure 6 

shows that the emissions are lowest in winter and highest in summer at both locations, with SC 
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showing a moderate increase and SP a more pronounced rise with greater variability. Spring 

and autumn have intermediate emission ranges, with SC consistently higher than SP. This 

suggests that CO₂ emissions are influenced by seasonal temperature changes, with SP exhibiting 

more variability due to different soil conditions during the summer, when the floods occurred. 

 

 
 

Fig. 6. The seasonal variation of CO2 emissions from SC and SP locations 

 

CO2 emissions were predicted for both SC and SP locations employing bivariate or 

multiple regressions utilizing different environmental variables such as temperature, pressure 

and Msoil. Table 6 provides the coefficients for evaluating model performance based on the 

coefficient of determination (R2) which indicate how well the models explain the variability in 

CO₂ emissions, the regression equation (Eq.) and the standard deviation of residuals (SD) [27, 

28]. The proportion of variance explained by the temperature predictor has an R2 = 0.761 in 

location SC, while location SP has a slightly higher R2 of 0.795, indicating that 79.5% of the 

variability in CO2 emissions are explained by temperature.  
 

Table 6. Regression models between CO2 emissions and the main soil physical parameters for SC and SP 

 

Parameter   SC SP 
Simple  

regression 

E=f(T) 

R2 0.761 0.795 
Eq. y=0.6442T0.9809 y=0.0094T2.3604 
SD 4.994 6.474 

Simple  

regression  

E=f(P*) 

R2 0.760 0.796 
Eq. y=0.662P0.973 y=1.133*10-2P2.306 
SD 5.002 6.462 

Simple  

regression  

E=f(Msoil) 

R2 0.655 0.973 
Eq. y=7.1808-0.556Msoil+0.012 Msoil

2 y=5.912+3.536 Msoil-0.0628 Msoil
2 

SD 6.1298 3.9885 
Multiple  

regression  

E=f(T,P*) 

R2 0.823 0.801 
Eq. y=0.586T+0.422P y=0.814T-0.565P 
SD 4.988 8.0206 

Multiple  

regression  

E=f(T,P*,Msoil) 

R2 0.831 0.863 
Eq. y=0.505T-1.989P+0.094Msoil y=-0.813T-14.373P+1.235 Msoil 
SD 5.1453 7.2944 

P*=P/1000 
 

The variance explained by the pressure predictor is like temperature predictor, with 

location SC having an R2 = 0.760 and location SP an R2 = 0.796. Soil moisture alone explains 

less variance in SC, with R2 = 0.655, but much higher variance in SP, where R2 = 0.973 and 

depicts that the model explains 97.3% of the variance in CO2 emissions, which is a very strong 
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correlation [24]. The multiple regression in which temperature and pressure were combined 

improves the variance explained, with SC having an R2 of 0.823 and SP an R2 of 0.801. 

Including all three predictors in the multiple regression, the model for SC has an R2 of 0.831 

and SP has R2 = 0.863, showing the highest explanatory power among the models. 

 

Conclusions 

 

The results of the assessment of CO2 emissions show that the two selected locations (SC 

and SP) had distinct emission models. The monitoring results indicate a clear correspondence 

between CO2 emissions and variations in temperatures (Tair and Tsoil). By statistical analysis at 

the SC location was found a significant positive correlation between CO2 emissions with Tsoil (r 

= 0.813; p < 0.01) and Tair (r = 0.793; p<0.01). Furthermore, positive correlations were found 

with Msoil and Precipitation (Pp) over a seven-day period, indicating the significant role of these 

parameters in determining the CO2 emissions from wetlands soils. On the other hand, in the SP 

location, CO2 emissions peaked in August due to the sudden change in moisture regime, 

reaching a maximum of 0.7282g·m-2·h-1. This increase in emissions was due to ecosystem 

disturbance by flooding events, which accelerated the release of CO2 from the soil. 

Subsequently, under conditions of continuous water saturation and combined with the 

decreasing of temperature, the emission values showed a decreasing trend, indicating a 

favourable potential for CO2 sequestration in flooded soils. The transition of the SP location 

from a drained to a flooded regime introduces variability in CO₂ emissions that might not be 

fully explained by the parameters measured. Factors such as oxygen availability, nutrient fluxes 

and soil redox potential were not directly monitored but could significantly impact CO₂ 

emissions during flooding. 

The needs for extrapolation of CO2 emissions based on measured data, considering time 

intervals and local implications, highlighted the importance of accounting for uncertainties in 

environmental conditions. Also, corrected monthly means provided a more accurate 

representation of CO2 emissions by incorporating day/night variations, which significantly 

affect emission levels. The relatively high-confidence coefficients (73.27%-76.03%) suggest 

that these corrected values are consistent and dependable across different months.  

Regression models used to predict future levels of CO₂ emissions based on analyzed 

meteorological and physical parameters showed that regression models with multiple predictors 

explained more variance and had lower residual standard deviations, indicating better predictive 

accuracy. The best performance for SC was achieved with a multiple regression with 

temperature, pressure and Msoil (R2=0.831), while for SP, the single regression with Msoil 

provided a fitted corelation (R2=0.973). A deeper exploration of potential factors that can 

significantly contribute to total CO₂ emissions, such as plant respiration or external pollution 

sources, would improve the accuracy and reliability of the CO₂ emissions data.  These factors 

could have influenced the recorded CO₂ levels, potentially introducing bias in 

attributing emissions solely to wetland processes. 

These findings provide valuable insights into the complex dynamics of CO2 emissions 

from wetland ecosystems and underscore the necessity of considering multiple environmental 

variables in predicting CO2 emissions those ecosystems. The results of the study contribute to 

the improvement of emission factors and models specific to the temperate region to improve the 

accuracy of emission estimates related to wetlands. These not only contribute to a more 

accurate national carbon budget, but also highlight the mitigation potential of conserving and 

restoring these ecosystems as part of national climate strategies. 

Future perspectives include improving predictive models by integrating more 

comprehensive datasets encompassing a wider range of environmental variables, such as data 

on soil chemistry, vegetation cover and hydrological dynamics, as well as extended observation 

periods. 
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