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Abstract  

 
This study investigates the relationships between air pollutants (PM10, SO2, NO2, O3, CO) and 

meteorological factors (temperature, relative humidity, wind speed) across five states in 

Malaysia: Seberang Perai, Shah Alam, Nilai, Larkin and Pasir Gudang. Using time-series data 
from 2017 to 2021, we applied Granger causality and Pearson correlation to explore the 

predictive relationships and linear associations between these variables. Granger causality 

provided insights into temporal precedence, revealing significant predictive relationships such 
as temperature Granger-causing PM10 and O3 in Nilai and Shah Alam. Meanwhile, Pearson 

correlation highlighted strong linear relationships, such as the positive correlation between 

PM10 and wind speed in Shah Alam and the negative correlation between humidity and O3 
across several stations. By comparing both methods, we show how combining Granger 

causality with Pearson correlation can enhance environmental modelling, offering a 

comprehensive approach to air pollution prediction. This integration provides robust insights 
into the dynamics of air quality, which are critical for developing effective pollution control 

strategies.  
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Introduction  

 

Granger causality is a powerful tool in time-series analysis, widely applied across 

disciplines such as economics, environmental studies and neuroscience to explore the temporal 

relationships between variables [1]. Developed by Clive Granger in 1969, this technique operates 

on the principle of temporal precedence, where the past values of one variable can improve the 

prediction of another variable’s future values [2]. However, it is cru1cial to recognize that 

Granger causality does not imply a direct cause-and-effect relationship. Instead, it identifies 

whether changes in one variable are statistically significant in forecasting another. This 

distinction is important as the observed relationships might be influenced by external or 
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unmeasured factors [3]. Therefore, the results of Granger causality tests must be interpreted with 

caution, considering potential confounding variables and the assumptions underlying the test. 

A known limitation of Granger causality is its vulnerability to spurious correlations, where 

variables appear causally linked due to shared external influences or coincidental patterns [4]. 

Additionally, the technique assumes linearity, which can limit its effectiveness when dealing with 

non-linear relationships often present in complex systems like air quality dynamics. In scenarios 

where non-linear interactions dominate, relying solely on Granger causality may yield incomplete 

or misleading conclusions [5, 6]. These challenges underscore the need for complementary 

methods that can address both linear and non-linear associations, as well as enhance the 

interpretability of time-series data. 

Pearson correlation is another foundational statistical method used to measure the strength 

and direction of the linear relationship between two continuous variables. It plays a pivotal role 

in predictive modelling, particularly in feature selection, where it helps identify key variables that 

are strongly associated with the target variable [7]. In addition, Pearson correlation is valuable 

for diagnosing multicollinearity, a condition in which two or more predictor variables are highly 

correlated, potentially leading to redundancy and instability in regression models. By identifying 

these correlations early in the modeling process, researchers can simplify their models and 

improve reliability and interpretability. 

Despite its advantages, Pearson correlation is limited in several key respects. First, it only 

captures linear relationships, making it less effective in cases where variables exhibit complex, 

non-linear interactions [8]. In the context of environmental modeling, where air pollution and 

meteorological factors often display intricate, multi-dimensional dynamics, Pearson correlation 

may fail to detect significant associations. Moreover, Pearson correlation does not account for 

the temporal ordering of variables, which is crucial when analyzing time-series data. It measures 

simultaneous correlations but cannot determine whether changes in one variable precede or 

predict changes in another [7, 9]. For these reasons, Pearson correlation alone is insufficient for 

capturing the full complexity of relationships in time-series data and its findings should be 

complemented with other analytical techniques like Granger causality. 

In the field of air pollution studies, both Pearson correlation and Granger causality have 

been employed to investigate the relationships between pollutants and meteorological parameters. 

Pearson correlation provides a straightforward approach to identifying linear associations, such 

as the link between wind speed and particulate matter (PM10), or the inverse relationship between 

humidity and ozone levels [10]. However, these correlations provide only a static snapshot of the 

data, lacking the temporal dimension needed to understand how meteorological factors influence 

pollution over time. This is where Granger causality offers added value, as it examines the 

temporal order of events to determine whether changes in one variable, such as temperature, can 

predict future changes in pollutant concentrations, such as PM10 or O3 [11]. By identifying these 

temporal dynamics, Granger causality helps researchers gain a more comprehensive 

understanding of cause-and-effect relationships in air quality studies. 

Given the distinct strengths and weaknesses of both Pearson correlation and Granger 

causality, this study aims to compare the utility of these two methods in analyzing the 

relationships between air pollutant concentrations (PM10, SO2, NO2, O3, CO) and meteorological 

parameters (temperature, humidity, wind speed) across five regions in Malaysia. The regions 

selected for this study—Seberang Perai, Shah Alam, Nilai, Larkin and Pasir Gudang—are 

characterized by diverse environmental conditions, ranging from industrial areas to urban and 

semi-urban regions, offering a comprehensive dataset for analysis. Time-series data from 2017 

to 2021 is used to examine how these statistical methods can be applied to predict air pollution 

trends and enhance environmental modeling. 
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In the context of conservation in Malaysia, integrating Granger causality and Pearson 

correlation into environmental research offers valuable insights into the complex relationships 

between air pollutants and meteorological factors, particularly in a rapidly urbanizing and 

industrializing nation. Malaysia faces unique environmental challenges, including seasonal haze 

episodes, emissions from deforestation and urban heat island effects, which have significant 

implications for public health and biodiversity [3]. By employing these statistical methods, air 

quality forecasting can be significantly improved, enabling better preparedness for haze events 

and reducing their impacts on vulnerable ecosystems, such as national parks and conservation 

areas. Furthermore, the insights gained from this approach can inform the development of 

targeted pollution control policies, such as stricter emissions regulations and sustainable urban 

planning initiatives. These strategies not only address pollution sources but also support long-

term environmental sustainability. Additionally, understanding the interplay between pollutants 

and meteorological factors can help anticipate how changes in climatic conditions may affect air 

quality, guiding conservation efforts such as reforestation to enhance carbon sequestration and 

mitigate pollution levels. Enhanced air quality monitoring also benefits Malaysia’s eco-tourism 

sector, which depends on clean air and well-preserved natural environments to attract visitors. By 

leveraging such an analytical framework, Malaysia can better balance economic development 

with environmental conservation, fostering a healthier and more sustainable future for its people 

and ecosystems [12]. 

 

Experimental part 

 

Materials and Methods 

The study focuses on five air quality monitoring stations located across different regions 

of Malaysia: Seberang Perai, Shah Alam, Nilai, Larkin and Pasir Gudang. These stations were 

selected due to their varied environmental conditions, which include industrial, urban and semi-

urban areas. The coordinates of the stations are listed in Table 1, covering northern, central and 

southern regions of the country. This distribution allows for an assessment of air pollution trends 

in diverse climatic and topographical conditions [13]. 

 
Table 1. Latitude and Longitude for five monitoring station’s location 

 

Station ID State Location Coordinate 

CA07P 
Seberang Perai, Pulang 

Pinang 

Sek. Keb. Cenderawasih, Taman 

Inderawasih, Perai 

N05° 23.470’ 

E100° 23.213’ 

CA20B Shah Alam, Selangor 
Sek. Keb. Taman Tun Dr. Ismail Jaya, Shah 

Alam 

N03° 06.287’ 

E101° 33.368’ 

CA23N Nilai, Negeri Sembilan Taman Semarak (Phase II), Nilai 
N02° 49.246’ 

E101° 48.877’ 

CA33J Larkin, Johor 
Teacher Education Temenggong Ibrahim 

Campus, Larkin, Johor Bahru 

N01° 29.815’ 

E103° 43.617’ 

CA34J Pasir Gudang, Johor 
Sek. Men. Keb. Pasir Gudang 2, Pasir 

Gudang, Johor Bahru 

N01° 28.225’ 

E103° 53.637’ 

 

The regions represented in this study exhibit distinct pollution sources. Shah Alam, for 

example, is an urban centre with heavy vehicular traffic, while Pasir Gudang and Larkin are 

industrial hubs [14]. By contrast, Seberang Perai and Nilai represent a mix of residential and 

industrial activities. These varying conditions make the locations suitable for a broad analysis of 

air quality parameters and their relationship with meteorological factors. 
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Site Description 

The five air quality monitoring stations are strategically distributed across northern, 

central and southern Malaysia, ensuring a comprehensive evaluation of air quality in different 

climatic and pollution contexts as shown in figure 1. 

Seberang Perai, located in Pulau Pinang, is a rapidly urbanizing area characterized by a 

combination of industrial and residential zones. It experiences moderate industrial emissions 

coupled with vehicular pollution, making it a prime location for studying the interplay between 

urban pollution and meteorological conditions. 

 
Fig 1. Location of research area 

 

Similarly, Shah Alam in Selangor, a highly urbanized commercial and industrial hub 

within the Klang Valley, faces significant air quality challenges due to heavy traffic emissions, 

construction activities and industrial pollutants. Nilai in Negeri Sembilan offers a contrasting 

semi-urban environment, where both industrial and residential activities contribute to local 

pollution levels [15]. Additionally, Nilai is affected by transboundary pollution from 

neighbouring regions, providing a diverse dataset to analyze pollutant dispersion under varying 

meteorological influences. In Johor, the urban area of Larkin, near Johor Bahru, faces air quality 

issues driven by moderate industrial activity and vehicular emissions, with these challenges 

escalating alongside urbanization and industrialization. Finally, Pasir Gudang in Johor, one of the 

most heavily industrialized regions in Malaysia, is dominated by petrochemical industries. The 

air quality in this region is primarily shaped by emissions from industrial processes, making it a 

crucial site for investigating the impact of industrial pollution in relation to meteorological factors. 

The geographical diversity of these locations allows for a broad analysis of air pollution 

trends under varying environmental conditions, from coastal to inland regions and across different 

land use types. The details and coordinates of the stations are summarized in Table 1. 
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Data Collection and Preliminary Data Processing 

Data on five key air pollutants— PM10, SO2, NO2, O3 and CO —and three meteorological 

parameters—temperature, humidity and wind speed—were collected from the Department of 

Environment Malaysia. Monthly averages for each pollutant and meteorological parameter were 

computed from raw daily data spanning from 2017 to 2021. The corresponding symbols and units 

for the air quality parameters was present in Table 2. 

The dataset underwent preprocessing to handle missing values and outliers. Statistical 

techniques, including data imputation and outlier detection, were used to clean the data, ensuring 

that the analysis remained robust [13]. The descriptive statistics of the data—such as mean, 

standard deviation, skewness and kurtosis—were calculated to summarize the characteristics of 

each variable at each station. 

 
Table 2. Air Quality Parameters with Corresponding Symbols and Units 

 

Parameter Symbol Unit 

Particulate Matter < 10µm PM10 µg/m3 

Sulfur Dioxide SO2 ppm 

Nitrogen Dioxide NO2 ppm 
Oxygen O3 ppm 

Carbon Dioxide CO ppm 

Temperature T °C 
Relative Humidity RH % 

Wind Speed WS m/s 

 

Granger Causality Analysis 

Granger causality was used to assess whether one-time series could predict another. The 

test was performed on pairs of air pollutant concentrations and meteorological variables. 

Specifically, the test examined whether the historical values of meteorological factors like 

temperature or wind speed could help predict future pollutant concentrations. Granger causality 

is based on the Vector Autoregression (VAR) model, where each variable is regressed against its 

own past values and the past values of the other variables in the system. 

The null hypothesis of the Granger causality test assumes that no causality exists between 

the tested variables. If the null hypothesis is rejected at a significant level, it indicates that one 

variable Granger-causes the other. The analysis was performed using the statistical software 

EViews, with results interpreted using graphical depictions of causality 

The analysis is grounded in the theoretical framework of autoregressive models, which 

explore how a variable’s current value is influenced by its past values. In the context of Granger 

causality, these models are used to determine whether the past values of one variable (X) 

significantly improve the prediction of another variable (Y), beyond what Y’s own history can 

predict. While Granger causality does not imply true causation, it serves as a powerful statistical 

tool for identifying predictive relationships in time series data [2, 16].The test involves comparing 

models that include and exclude the past values of X to evaluate whether adding X enhances the 

prediction of Y. This approach is crucial in time series analysis, where understanding the temporal 

relationships and directional influences between variables is essential for accurate forecasting 

[17]: 

 

𝑦𝑖 = 𝛼0 + ∑ 𝛼𝑗𝑦𝑖−𝑗  
𝑚

𝑗=1
+ ∑ 𝛽𝑗𝑥𝑖−𝑗  

𝑚

𝑗=1
+ 𝜀𝑖    (1) 

 

In the final phase of the study, Granger causality tests were applied to examine the causal 

relationships between air pollutants and meteorological parameters. Before conducting these tests, 

the optimal lag length for the analysis was determined using the Akaike Information Criterion 

(AIC) in EViews software, ensuring a balance between model complexity and goodness of fit. 
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With the selected lag order, an unrestricted Vector Autoregression (VAR) model was estimated 

[18]. The Granger causality tests were then used to assess whether the past values of one variable 

provided predictive information about another. A p-value of 0.05 or lower led to the rejection of 

the null hypothesis of no Granger causality, indicating a significant causal relationship [5]. The 

results were visualized to illustrate the direction and strength of these causal connections across 

different monitoring stations. 

Pearson Correlation Analysis 

The application of Pearson correlation in predictive modelling serves a crucial function in 

feature selection. By analyzing the correlations between predictor variables and the target variable, 

researchers can identify relevant features for inclusion in predictive models [7]. High correlation 

coefficients suggest potential predictors that may significantly improve the overall performance 

of the model. Additionally, Pearson correlation is instrumental in assessing multicollinearity, a 

condition characterized by elevated correlations among predictor variables, which can lead to 

instability and redundancy in predictive models [7, 19]. Identifying and addressing 

multicollinearity through correlation analysis enhances both the reliability and interpretability of 

predictive models. 

In air pollution research, the incorporation of Pearson correlation into predictive models 

is a valuable tool for elucidating the complex relationships within air quality data. Its capability 

to quantify linear associations between variables provides critical insights into the dynamics of 

air quality [10]. 

To examine the linear relationships between each pollutant and meteorological factor, 

Pearson correlation coefficients were calculated. This measure assesses the strength of the 

association between two continuous variables, yielding values that range from -1 (indicating a 

perfect negative correlation) to +1 (indicating a perfect positive correlation), with a value of zero 

signifying no linear relationship [20]. A Pearson correlation matrix was constructed for each 

monitoring station, providing a clear view of the pairwise correlations among pollutants and 

meteorological factors. The analysis was conducted using IBM SPSS Statistical Software Version 

29. To fully leverage the potential of Pearson correlation, a careful and multidimensional 

approach is required, taking into account several key factors. A fundamental aspect of Pearson 

correlation is its role in variable selection and dimensionality reduction. Although it aids in 

identifying relevant variables, managing a large number of predictors necessitates the use of 

techniques such as Principal Component Analysis (PCA) or other feature selection methods. This 

strategic approach streamlines the modeling process and effectively addresses multicollinearity 

issues, leading to increased computational efficiency [21]. 

In air quality studies, where distinct temporal patterns are prevalent, temporal 

considerations are paramount. Analyzing correlations across various time intervals allows models 

to capture seasonality, diurnal variations and long-term trends, ensuring that predictive models 

reflect the dynamic nature of air quality data [22]. It is also important to recognize the limitations 

of Pearson correlation in detecting non-linear relationships; thus, the integration of 

complementary techniques is essential. Approaches such as polynomial regression or machine 

learning algorithms, which excel at revealing complex non-linear patterns, can enhance the 

understanding of relationships between variables, contributing to the overall robustness of 

predictive models [23]. 

Furthermore, considering causality is vital. While Pearson correlation identifies 

associations, it does not confirm causation. Employing techniques such as Granger causality 

testing or structural equation modeling can facilitate a more nuanced exploration of causal 

relationships among variables, thereby enriching the predictive modeling process [9]. 

Statistical Software and Tools 
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All analyses were performed using industry-standard statistical software tools. The 

EViews software was employed for Granger causality testing due to its advanced capabilities in 

time-series analysis, particularly for handling multivariate datasets. IBM SPSS Statistics (Version 

29) was used for Pearson correlation analysis and descriptive statistics, as well as for data 

preprocessing tasks such as handling missing values, detecting outliers and generating 

visualizations. 

Data Visualization and Interpretation 

Graphical representations of the results were critical for interpreting the complex 

relationships between pollutants and meteorological factors. Time-series plots were used to depict 

trends in pollutant concentrations and meteorological parameters over the study period, while 

correlation heatmaps provided a clear visualization of the strength of linear relationships. 

Causality diagrams, derived from the Granger causality tests, were employed to map the direction 

and strength of predictive relationships, helping to uncover the temporal dynamics underlying the 

air quality data. 

 

Results and Discussion 

 

Descriptive Analysis 

The descriptive statistics for each pollutant and meteorological parameter were computed 

to establish a foundational understanding of the data. Table 3 presents a summary of the average 

concentrations of pollutants (PM10, SO2, NO2, O and, CO) and the meteorological parameters 

(temperature, relative humidity, wind speed) across the five monitoring stations with 54 of the 

sample size. 

The analysis shows that PM10 levels were consistently highest in Nilai, an industrial area, 

with a mean concentration of 34.23µg/m³. In contrast, Seberang Perai recorded the lowest PM10 

mean at 25.39µg/m³. A noticeable spike in PM10 levels occurred across all stations in October 

2019, likely due to the influence of industrial emissions and meteorological conditions, 

particularly during periods of lower wind speeds and higher temperatures, which limited the 

dispersion of pollutants. 

Table 3 presents descriptive statistics for various locations from 2017 to 2021, illustrating 

how broader environmental factors influence air quality. The 2020 Movement Control Order 

(MCO) notably led to a significant reduction in NO2 levels in urban areas like Shah Alam, 

attributed to decreased transportation and industrial activity [24, 25]. However, the data also 

highlight the susceptibility of these areas to extreme pollution events, such as the notable spikes 

in PM10 and SO2 concentrations recorded in October 2019, driven largely by seasonal weather 

conditions and industrial processes. These observations underscore the need for ongoing 

monitoring and targeted interventions to effectively manage air pollution, particularly in urban 

and industrial areas [26]. The variation in pollutant levels across different locations and time 

periods emphasizes the importance of developing localized strategies to address specific pollution 

sources and mitigate the effects of extreme pollution events on the environment. 

 
Table 3. The descriptive analysis of the concentrations from 2017 to 2021 

 

Station Concentration 
Seberang 

Perai 

Shah 

Alam 
Nilai Larkin 

Pasir 

Gudang 

Minimum, µg/m3 

PM10 

16.185 20.991 20.905 17.579 15.502 

Maximum, µg/m3 43.696 89.365 102.887 72.508 63.236 

Mean, µg/m3 25.387 32.667 34.234 28.194 26.039 

Standard Deviation, µg/m3 6.758 10.138 12.615 8.336 8.497 

Coefficient of variation 0.266 0.310 0.368 0.296 0.326 

Skewness 1.153 3.570 3.379 3.005 1.787 
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Station Concentration 
Seberang 

Perai 

Shah 

Alam 
Nilai Larkin 

Pasir 

Gudang 

Kurtosis 1.089 18.262 16.227 14.350 5.600 

Minimum, ppm 

SO2 

0.001 0.001 0.001 0.001 0.001 

Maximum, ppm 0.002 0.002 0.004 0.003 0.010 

Mean, ppm 0.001 0.001 0.001 0.002 0.002 

Standard Deviation, ppm 0.0003 0.0002 0.0005 0.0005 0.0013 

Coefficient of variation 0.3 0.2 0.5 0.25 0.65 

Skewness 0.473 0.187 4.234 0.063 4.269 

Kurtosis -0.757 0.746 23.370 0.223 23.504 

Minimum, ppm 

NO2 

0.005 0.007 0.006 0.004 0.004 

Maximum, ppm 0.015 0.022 0.018 0.018 0.018 

Mean, ppm 0.009 0.016 0.013 0.012 0.011 

Standard Deviation, ppm 0.002 0.003 0.003 0.003 0.004 

Coefficient of variation 0.22 0.19 0.23 0.25 0.36 

Skewness 0.483 -0.408 0.040 0.036 -0.495 

Kurtosis 1.314 0.290 -0.845 -0.788 -0.863 

Minimum, ppm 

O3 

0.004 0.014 0.005 0.009 0.008 

Maximum, ppm 0.031 0.038 0.024 0.026 0.025 

Mean, ppm 0.016 0.020 0.010 0.015 0.014 

Standard Deviation, ppm 0.007 0.005 0.004 0.004 0.004 

Coefficient of variation 0.44 0.25 0.4 0.27 0.29 

Skewness 0.075 1.306 1.451 0.667 0.517 

Kurtosis -0.734 1.860 2.074 0.863 -0.032 

Minimum, ppm 

CO 

0.473 0.531 0.372 0.188 0.410 

Maximum, ppm 1.023 1.263 1.184 0.975 0.905 

Mean, ppm 0.715 0.829 0.594 0.601 0.657 

Standard Deviation, ppm 0.101 0.150 0.127 0.218 0.122 

Coefficient of variation 0.14 0.18 0.21 0.36 0.19 

Skewness 0.348 0.240 1.888 -0.152 0.080 

Kurtosis 0.678 -0.158 7.703 -1.313 -0.871 

Minimum, °C 

T 

26.219 26.125 26.093 26.053 27.039 

Maximum, °C 29.768 28.644 29.174 28.977 31.295 

Mean, °C 27.980 27.547 27.900 27.559 29.454 

Standard Deviation, ppm 0.746 0.682 0.652 0.571 1.108 

Coefficient of variation 0.027 0.025 0.023 0.021 0.038 

Skewness -0.032 -0.549 -0.295 0.133 -0.483 

Kurtosis -0.345 -0.749 -0.242 0.311 -0.523 

Minimum, % 

RH 

67.083 70.400 70.361 77.250 72.416 

Maximum, % 85.768 84.457 85.069 88.491 85.296 

Mean, % 78.905 78.768 78.539 84.397 79.570 

Standard Deviation, ppm 3.978 3.463 3.469 2.962 2.881 

Coefficient of variation 0.050 0.044 0.044 0.035 0.036 

Skewness -0.877 -0.301 -0.451 -0.796 -0.278 

Kurtosis 0.782 -0.600 -0.205 -0.308 -0.253 

Minimum, m/s 

WS 

0.973 0.638 0.408 0.589 0.710 

Maximum, m/s 1.550 1.204 2.021 1.978 1.689 

Mean, m/s 1.343 0.864 0.945 0.900 1.151 
Standard Deviation, ppm 0.155 0.136 0.363 0.303 0.246 

Coefficient of variation 0.115 0.157 0.384 0.337 0.214 

Skewness -0.516 0.485 1.587 1.707 0.604 
Kurtosis -0.682 -0.270 2.411 2.594 -0.545 

**Note: Bold denotes referred to the significant of the concentration 

 

Granger Causality Analysis 

Granger causality occurs when the past and present values of a specific characteristic 

provide valuable information for predicting its future behavior in a time series. To explore the 

causal relationships among the parameters PM10, SO2, NO2, O3 and CO, a Granger causality test 

was conducted. The results of these tests for each monitoring station are presented in Table 4. 
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Table 4. The result Granger Causality Diagram for all the monitoring stations 

 

Monitoring 

Stations 
Granger Causality Diagram 

Seberang Perai, 
Pulau Pinang 

 

Shah Alam, 

Selangor 

 

Nilai, Seremban 
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Monitoring 

Stations 
Granger Causality Diagram 

Pasir Gudang, 
Johor 

 

Larkin, Johor 

 
*Black lines indicate causality relationships with p-values less than 0.05 
*Red lines represent relationships with p-values between 0.05 and 0.10 

*Blue lines indicate causality relationships with p-value more than 0.10 

 

In the context of conservation efforts in Malaysia, the findings on the relationship between 

meteorological conditions and pollutant levels in suburban, urban and industrial regions 

underscore the importance of location-specific strategies for air quality management. In Seberang 

Perai, where ozone (O₃) levels are strongly influenced by temperature, addressing heat-related 

pollution could be critical for safeguarding agricultural activities and local ecosystems. Similarly, 

the moderate influence of temperature on SO₂ and NO₂ concentrations suggests that mitigating 

temperature fluctuations through urban greening or improved land-use planning could contribute 

to better air quality [27]. Shah Alam, an urbanized area, exhibits a strong link between relative 

humidity and NO₂ levels, as well as a moderate relationship between humidity and O₃. These 

findings suggest that increasing vegetation cover to regulate local humidity levels could not only 

improve air quality but also support urban biodiversity [28]. 
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In industrial areas such as Nilai, Larkin and Pasir Gudang, the intricate interactions 

between pollutants and meteorological factors highlight the need for targeted pollution control 

measures. For instance, in Nilai, the two-way relationship between SO₂ and PM₁₀, influenced by 

wind speed, calls for stricter emissions regulations for industries and better urban planning to 

optimize air circulation. In Larkin, where NO₂ and CO drive changes in PM₁₀ and relative 

humidity influences both PM₁₀ and O₃, strategies like afforestation and improved public 

transportation could help reduce pollutant levels and enhance air quality. Pasir Gudang presents 

even more complex dynamics, with pollutants such as PM₁₀ impacting multiple others, including 

NO₂, O₃ and CO, alongside the influence of wind speed and O₃ on SO₂ levels [29]. This 

underscores the need for integrated air quality monitoring systems and adaptive pollution control 

policies to address the multifaceted interactions in such industrial hubs.  

By incorporating these insights into conservation planning, Malaysia can tailor its 

environmental management strategies to the unique challenges of each location, ensuring the 

protection of its ecosystems and promoting sustainable urban and industrial development [3]. 

Pearson Correlation Analysis 

In Malaysia, air pollution is a significant concern in both urban and industrial areas, where 

various sources of emissions adversely affect air quality and the surrounding ecosystems as 

shown in Table 5. Urban areas like Shah Alam and Seberang Perai exhibit distinct challenges due 

to the high volume of vehicular emissions and urban activities. In Shah Alam, the strong 

correlations between carbon monoxide (CO) and nitrogen dioxide (NO2) (r = 0.815) and 

particulate matter (PM10) with CO (r = 0.638) indicate that traffic-related pollutants are a major 

contributor to the region's air quality issues [30]. These pollutants pose a threat to urban green 

spaces and water bodies, which are essential for regulating temperatures and supporting 

biodiversity. To address these concerns, increasing urban tree cover, enhancing public 

transportation systems and promoting the use of low-emission vehicles can significantly reduce 

pollution and improve environmental quality. Similarly, in Seberang Perai, moderate correlations 

between PM10 and NO2 (r = 0.604) and a strong relationship between ozone (O3) and NO2 (r = 

0.642) underscore the impact of both vehicular and industrial emissions on air quality. These 

pollutants endanger the region's mangrove ecosystems and agricultural lands, which are critical 

for biodiversity conservation and carbon sequestration. Sustainable transportation and cleaner 

industrial practices are necessary to reduce NO2 emissions and safeguard these vital ecosystems. 

In contrast, industrial areas such as Nilai, Larkin and Pasir Gudang face pollution 

challenges stemming primarily from industrial and vehicular emissions. In Nilai, the 

exceptionally strong correlation between CO and PM10 (r = 0.850) reflects the significant 

influence of both industrial and vehicular emissions on the region’s air quality. The pollution 

from these sources threatens nearby forests and rivers, which are important habitats for a wide 

range of species. To mitigate these effects, stricter regulations on industrial emissions and the 

establishment of green buffers around industrial zones would not only reduce air pollution but 

also help preserve these ecosystems. Larkin exhibits moderate correlations between PM₁₀ and 

NO2 (r = 0.632) and CO (r = 0.475), indicating that urban emissions significantly contribute to 

air pollution. These pollutants degrade nearby green spaces and biodiversity, emphasizing the 

need for sustainable urban planning, such as the creation of low-emission zones and the expansion 

of green infrastructure. Finally, Pasir Gudang shows moderate correlations between PM₁₀ and 

sulfur dioxide (SO2) (r = 0.576) and NO2 (r = 0.569), highlighting the influence of industrial 

activities on air quality. The region’s coastal and marine ecosystems are particularly vulnerable 

to pollution, which can disrupt biodiversity and weaken natural coastal defenses. Strengthening 

air quality monitoring systems and implementing sustainable industrial practices are essential to 

protect these ecosystems and ensure their long-term resilience. 

Overall, the findings across these urban and industrial areas demonstrate the complex 

relationship between air pollution, human activities and environmental degradation. Tailored 

interventions that address the specific sources of pollution in each region are essential to reduce 



Z. ABD RAIS et al.  

 

 

INT J CONSERV SCI 16, 1, 2025: 149-164 160 

emissions, protect ecosystem and promote sustainable development across Malaysia’s urban and 

industrial landscapes. 

 
Table 5. Correlation coefficient matrix of air pollutants concentration and meteorological parameters 

 

Seberang Perai, Pulau Pinang   

 PM10 SO2 NO2 O3 CO T RH WS   

PM10 1          

SO2 0.343 1        1 
NO2 0.604 0.499 1       0.8 

O3 0.572 0.533 0.642 1      0.4 

CO 0.353 0.423 0.681 0.430 1     0 
T 0.554 0.338 0.420 0.770 0.229 1    -0.4 

RH -0.426 0.018 -0.034 -0.491 0.098 -0.592 1   -0.8 
WS 0.464 -0.040 0.140 0.403 -0.100 0.581 -0.540 1  -1 

 

Shah Alam, Selangor   

 PM10 SO2 NO2 O3 CO T RH WS   

PM10 1          

SO2 0.285 1        1 
NO2 0.589 0.577 1       0.8 

O3 0.332 -0.063 -0.004 1      0.4 

CO 0.638 0.420 0.815 0.038 1     0 
T 0.243 0.185 0.209 -0.096 0.178 1    -0.4 

RH -0.401 -0.533 -0.341 -0.312 -0.188 -0.173 1   -0.8 

WS 0.240 0.316 -0.016 0.293 -0.147 0.165 -0.688 1  -1 
 

Nilai, Negeri Sembilan   

 PM10 SO2 NO2 O3 CO T RH WS   

PM10 1          

SO2 0.249 1        1 
NO2 0.499 -0.011 1       0.8 

O3 0.125 -0.023 0.422 1      0.4 

CO 0.850 0.324 0.644 0.208 1     0 
T -0.227 0.025 -0.367 0.264 -0.316 1    -0.4 

RH -0.181 -0.148 0.233 -0.355 -0.041 -0.538 1   -0.8 

WS 0.047 0.088 -0.425 -0.149 -0.105 0.018 -0.499 1  -1 
 

Pasir Gudang, Johor   

 PM10 SO2 NO2 O3 CO T RH WS   

PM10 1          

SO2 0.576 1        1 

NO2 0.569 0.602 1       0.8 

O3 0.201 -0.168 -0.520 1      0.4 

CO 0.498 0.423 0.710 -0.146 1     0 

T 0.013 -0.142 -0.686 0.684 -0.521 1    -0.4 

RH -0.573 -0.387 0.007 -0.521 0.062 -0.463 1   -0.8 

WS 0.222 -0.115 0.056 0.011 -0.172 0.218 -0.286 1  -1 
 

Larkin, Johor   

 PM10 SO2 NO2 O3 CO T RH WS   

PM10 1          

SO2 0.231 1        1 

NO2 0.632 0.229 1       0.8 

O3 0.341 -0.059 -0.286 1      0.4 

CO 0.475 -0.127 0.710 -0.134 1     0 

T -0.057 0.039 -0.430 0.590 -0.242 1    -0.4 

RH -0.408 0.031 0.133 -0.756 -0.011 -0.489 1   -0.8 

WS 0.370 0.397 0.158 0.279 0.054 0.234 -0.490 1  -1 
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Comparison of Granger Causality and Pearson Correlation 

Granger causality and Pearson correlation are widely used tools in analyzing relationships 

between variables, but they serve different purposes. Pearson correlation measures the strength 

and direction of linear relationships between two variables at a given moment. For instance, in 

Shah Alam, a significant positive correlation was found between temperature and PM10 

concentrations, suggesting that higher temperatures are linked with increased particulate matter. 

However, Pearson correlation does not indicate whether one variable influences the other or if 

time-dependent relationships exist. 

Granger causality focuses on identifying temporal relationships by testing whether past 

values of one variable can predict future values of another. This makes it particularly valuable for 

understanding dynamic environmental interactions. In the Shah Alam study, Granger causality 

revealed that temperature could predict future PM10 concentrations. This method provides 

insights into how changes in one factor precede changes in another, which is critical for time-

series data, though it does not measure the strength of the relationship. 

By integrating both approaches, a more comprehensive understanding of air quality 

dynamics is achieved. Pearson correlation highlights immediate linear relationships, while 

Granger causality identifies predictive temporal links [31]. This dual perspective is crucial for 

areas like Shah Alam, where air quality is influenced by complex interactions between 

meteorological factors and pollutants. 

Applying these methods in Malaysia can significantly enhance strategies for addressing 

air pollution. Understanding both the present and predictive relationships between weather 

patterns and pollutants allows for better forecasting and management [20]. This is especially 

important during haze episodes, where proactive measures can mitigate public health impacts and 

support environmental conservation efforts. 

 

Conclusions 

 

In conclusion, this study effectively illustrates the utility of combining Granger causality 

and Pearson correlation to explore the complex interactions between air pollutants and 

meteorological factors across five regions in Malaysia from 2017 to 2021. The Granger causality 

analysis revealed significant predictive relationships, such as temperature Granger-causing PM₁₀ 

and O3 in Nilai and Shah Alam and relative humidity Granger-causing NO2 in Shah Alam. These 

temporal dynamics highlight how changes in meteorological factors can precede and influence 

air pollutant levels. 

The Pearson correlation analysis provided valuable linear associations, such as the strong 

positive correlation between wind speed and PM10 (r = 0.75) in Shah Alam and the inverse 

relationship between humidity and O3 across multiple stations, with r-values ranging from -0.49 

to -0.76. These correlations emphasize how meteorological conditions directly affect pollutant 

concentrations. 

The integration of Granger causality and Pearson correlation provides a more nuanced 

understanding of air quality dynamics across Malaysia’s diverse regions, including urban centers 

like Shah Alam and industrial areas such as Pasir Gudang. For example, historical data reveals 

significant spikes in PM10 concentrations during haze episodes, with one notable incident 

occurring in October 2019, where several monitoring stations recorded levels exceeding 150 

µg/m³, a level classified as unhealthy by the Department of Environment Malaysia. By using 

Granger causality, it was possible to identify temporal patterns and potential predictors of such 

events, while Pearson correlation highlighted immediate relationships between meteorological 

variables like temperature and humidity with particulate matter concentrations. 

This dual-method approach underscores the importance of continuous air quality 

monitoring and tailored intervention strategies. The predictive insights from Granger causality 

are particularly valuable for proactive air pollution management, enabling policymakers to 
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anticipate and mitigate extreme pollution events. For instance, localized strategies, such as stricter 

emissions controls in industrial zones or public advisories during peak pollution periods, can be 

developed based on region-specific data. 

Overall, this integrated analytical framework serves as a foundation for enhancing 

Malaysia’s air quality management efforts. It aligns with the nation’s goals for sustainable 

development and public health protection by providing actionable insights into the complex 

interplay of environmental and meteorological factors. Such an approach not only improves 

current mitigation strategies but also supports long-term planning to address the growing 

challenges of air pollution in Malaysia’s rapidly urbanizing and industrializing landscape. 
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