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Abstract  

 

The application of Airborne Laser Scanning methods (ALS) in archaeology has opened a new 

chapter for prospective research in forest areas. Previously, these were under-explored due to 

the lack of effective methods for recording archaeological remains in forests. With LiDAR 

data, researchers can now use available analytical tools. Also, they have developed new tools 

by creating so-called image derivatives, which have expanded the possibilities of microrelief 

interpretation for the identification of archaeological objects. This paper presents the results of 

DTM analyses and field investigations that were carried out at the Osie archaeological site 

(Poland). The site was discovered thanks to DTM analyses, which made it possible to identify 

an extensive settlement complex from the Late Roman Period. The object of our research was 

to identify remains connected with modern forest management in the form of traces of 

ploughing. The aim was to see how spatial data analyses, by means of which we identify 

ploughing traces, correlate with the results of archaeological surveys. 
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Introduction 

 

The use of Airborne Laser Scanning (ALS) in archaeology has opened a new chapter for 

prospective research in forest areas. Previously, these were insufficiently explored due to the 

lack of effective methods of registering archaeological remains in forests [1–5]. Thanks to 

LiDAR data, researchers can now use available analytical tools [6–8]. Newly developed tools 

and algorithms have also expanded the possibilities of micro-relief interpretation in terms of the 

identification of archaeological objects, including tools such as Local Relief Modelling (LRM) 

[9], Sky-View Factor (SVF) [10, 11], Openness Positive and Negative [12], Topographic 

Position Index (TPI) [13], Morphometric Features – Minimum Curvature [14, 15], and Terrain 

Ruggedness Index [16]. The problem of identification of archaeological objects of different size 

on the basis of LiDAR surveys is related to the point cloud density and often conflicts with the 

conclusions of site verification, especially in forested areas. This illustrates the difficulties in 

unambiguous interpretation of the archaeological landscape [4]. Frequent occurrences of 
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various temporal relics present in the landscape, which were interpreted as archaeological 

heritage, made researchers aware of the problem of landscape complexity, as the accumulation 

of effects of various activities and processes is reflected in micro-relief. As a result, the 

archaeological landscape was seen as a palimpsest. This resulted in a change of the research 

optics to one in which the landscape began to be understood as a complex of traces and 

structures that are a consequence of past human activities [17]. Furthermore, according to this 

line of research optics, the perceived anthropogenic features of microrelief can manifest 

themselves in the form of traces that are interpreted as a system of different-time phenomena. 

The perception of a landscape understood as a palimpsest forces researchers to adopt an 

approach based on a critical interpretation, which ultimately leads to the discovery and isolation 

of the sequence of human activities of various times recorded in the landscape. Therefore, the 

key step in the research process seems to be the correct identification of microrelief features, the 

assessment of chronology and the differentiation of possible cultural affiliations of the observed 

features [18].  

 

Aim of the research 

The process of landscape interpretation is definitely a task that requires proper 

preparation. It should be preceded by research on cartographic and historical sources. The 

analysis presented in this paper aimed at isolating morphological features of microrelief which 

occurred as a consequence of past human activities, which is a kind of landscape 

deconstruction. Based on induction and downsizing, the interpretation of certain phenomena 

visible in the landscape allows for a gradual and comprehensive understanding of the 

complexity of processes that took place in a given space and influenced the formation of the 

microrelief. It seems that in such an approach, the first proper research step should be to 

perform an analysis in terms of identifying traces of modern human activities related to the so-

called Anthropocene [19]. The isolation of contemporary or modern traces of human activities 

is an excellent starting point for determining sequences of events more distant in time. 

Therefore, the subject of this study was the identification of remains related to modern forest 

management in the form of ploughing traces. The aim of the research was to check how spatial 

data analyses, by means of which we identify ploughing traces, correlate with the results of 

field studies. 

So far, the interest of researchers has been focused primarily on the identification of 

historical objects, created as a result of a long process of ploughing. These were ridge and 

furrow field systems, plough headlands and others [20]. Recently, also in Poland, attention has 

been paid to such types of elements of archaeological sites, which should be taken into account 

in the process of interpretation [21]. While the above examples concerned the identification of 

old landscape transformations, the issue of registering modern ploughing traces still remains 

open. In this article, we try to diagnose the problem of identifying traces of forestry within 

archaeological sites. It was assumed that such identification is important not only in the process 

of deconstruction and isolation of landscape features but is also significant from the point of 

view of conducting prospective and verification studies in the field. The results of analyses 

showing the traces of ploughing may be helpful in terms of research planning and assessing its 

effectiveness in difficult forest terrain. Therefore, it was decided to check how the identification 

of zones with traces of modern forest ploughing, occurring within archaeological sites with 

microrelief, affects the research process.  

This article presents the results of DTM analyses and field research carried out at the 

Osie archaeological site. The site was discovered thanks to DTM analyses, which made it 

possible to recognise an extensive settlement complex from the Late Roman Period [22]. It 

consists of a complex of embankments interpreted as mid-field balks (Fig. 1) and a residential 

and production settlement with a road relic (Fig. 2). The complex includes relics of fields, 

roads, barrows and a settlement located in the centre. This unique find of a completely 
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preserved rural landscape forced researchers to develop a new approach of investigation. In the 

first place, attention was drawn to the need of identifying areas with traces of ploughing, 

because, as shown by the experience of surface surveys in agricultural areas, ploughing causes 

historic features to be thrown onto the surface [23]. The current results of excavations in forest 

areas indicate a shallow occurrence of cultural layers, often just under a very thin layer of 

undergrowth. On the one hand, this intensifies the destruction process, on the other hand, it 

gives a chance for a possible registration of artifacts on the surface. 

  

 
 

Fig. 1. Mid-field balks from the Late Roman Period 

 

 
 

Fig. 2. A residential and production settlement with a relic of a road running horizontally  

in the central part of the image 
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The first stage of the research was to determine the most effective DTM analysis which 

would allow us to clearly identify ploughing traces in order to select areas for prospective 

research. Six analyses were selected for this purpose: Local Relief Model (LRM) [9, 24, 25], 

Sky-View Factor (SVF) [10, 11], Openness Positive (OPEN_POS) and Openness Negative 

(OPEN_NEG) [11, 12, 26], Topographic Position Index (TPI) [27–29], Morphometric Features 

- Minimum Curvature (MIN_CURV) [14, 15], and Terrain Ruggedness Index (TRI) [16]. The 

following research questions were posed: which of the analyses provide satisfactory images for 

unambiguous identification of ploughing traces? Whether, and how, the images obtained allow 

for the assessment of the degree of destruction occurring at archaeological sites and can they be 

helpful in planning field research? Can the results of the above analyses support the process of 

interpreting positions? 

Currently, research on ploughing traces based on DTM is being conducted to detect 

arable soils for the purpose of classifying agricultural lands [30]. In archaeology, the problem of 

the presence of traces of modern ploughing at sites is perceived as noise, as a factor disturbing 

the process of identifying objects with an older metric [31]. In this article, we take the opposite 

approach and treat the identification of ploughing traces as the key information for the research 

questions. 

Study area 

The study covered a forest area of over 200ha in the Wdecki Landscape Park, which is 

the eastern part of the Bory Tucholskie forest complex in northern Poland (Fig. 3). It is a very 

old forest complex with a diverse age structure of the stand. Within the research area, there are 

deciduous and mixed forests, where a mean age of trees are 130-170 years old. On a map from 

the beginning of the 19th century, the research area is shown as heavily forested (Fig. 4). On this 

basis, it was concluded that in modern times only forestry was carried out there. The starting 

point for the research was a comprehensive DTM analysis, the purpose of which was to identify 

archaeological objects occurring in the Wdecki Landscape Park. As a result, two archaeological 

sites - test fields - were selected for the purpose of identifying traces of forest ploughing. 

 

 
 

Fig. 3. Red outline - location of the study area, blue - upper and lower test fields  

(source: BDOO, geoportal.gov.pl) 
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Fig. 4. Location of the study area (red) on the map from 1910,  

blue - upper and lower test fields [32]   

 

Materials and Methods 

 

LiDAR ISOK data description  

In Poland, ALS research has been conducted as a part of the ISOK project [33]. ALS 

data gathered during the ISOK project covers more than 90% of the Polish territory. These data 

can be classified into standards (Standard I and Standard II) based on the parameters included in 

Table 1. Currently, LiDAR datasets can be downloaded from the National Geodetic and 

Cartographic Resource. They are used in numerous research projects by specialists in various 

domains, as they are the first remote sensing data on terrain relief of such accuracy. This is 

particularly important in areas covered with trees. Mountain terrains are included in Standard I 

(Table 1). Other values that characterise ALS standards were not summarised in Table 1, as 

they do not demonstrate significant changes between the standards and do not affect the 

accuracy of LiDAR-based elevation data.  
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Table 1. Characteristics of the ISOK LiDAR products with regard to standards 

 

The point cloud was assigned the following numerals during classification:  

  1. Points processed but not classified. 

  2. Ground points. 

  3. Points representing low vegetation, i.e., between 0 and 0.40m. 

  4. Points representing medium vegetation, i.e., between 0.40 and 2.00m. 

  5. Points representing high vegetation, i.e., higher than 2.00m. 

  6. Points representing buildings, structures and engineering objects. 

  7. Noise. 

  8. Points representing underwater areas 

Measurement data of ALS ISOK are stored and made available in the system of 

topographic map division in the scale of 1:5.000. The analysed area was present on six map 

sheets (N34-85-Ba-222, N34-85-Ba-224, N34-85-Ba-242, N34-85-Bb-111, N34-85-Bb-113, 

N34-85-Ba-131), which were downloaded from geoportal.gov.pl. SAGA GIS software was 

used to process LAS files. In the first stage, Ground points (class 2) were extracted from the 

point cloud by using the Point Cloud Reclassifier/Subset Extractor module. Then, the point 

cloud was converted to a grid form with a given resolution in the Point Cloud to Grid module, 

with Aggregation set as mean value, and the Cellsize = 0.25. In the next step, No data values 

were eliminated in the Close Gaps module, with the Tension Threshold = 0.1. As a result, the 

Digital Terrain Model (DTM) with a cell size of 0.25m was obtained using the Nearest 

Neighbourhood algorithm. 

By processing the DTM with LRM, SVF, OPEN_NEG, OPEN_POS, TRI, TPI and 

Minimum Curvature algorithms, seven images derived from the DTM were obtained. The 

resulting images were described in terms of the visibility of ploughing traces and then compared 

by creating profiles at five selected field locations. The results of automatic detection of plough 

traces on each of the derived images are also presented. The quality of the classification was 

evaluated and the best DTM-derived image for automatic detection of plough traces was 

identified. 

Digital Terrain Model derivatives 

The algorithms Local Relief Model, Sky-View Factor, Openness Positive and Negative, 

Topographic Position Index, Morphometric Features - Minimum Curvature and Terrain 

Ruggedness Index were used to generate DTM derivatives. The description of each algorithm 

and the presentation of their most important parameters are provided below. 30-meter-long 

profiles located in five characteristic places of the study area were used to identify appropriate 

values of parameters (Fig. 5a and c). The obtained images were compared by analysing two test 

fields - the upper one (Fig. 5b) with dimensions of about 400×250m and the lower one with 

dimensions of about 200×100m (Fig. 5d).  

Parameter Standard I Standard II 

Point cloud density ≥ 4–6 pts/m2 ≥ 12 pts/m2 

Vertical accuracy (mean error) of the ALS point 

cloud after alignment (on flat, paved surfaces) 
mh ≤ 0.15m mh ≤ 0.10m 

Horizontal accuracy (mean error) of the ALS point 

cloud after alignment (on flat, paved surfaces) 
mp ≤ 0.50m mp ≤ 0.40m 

Term of measurement 
From October to 

the end of April 
Entire year 
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Fig. 5. Field cross-sections (yellow) on a high-resolution orthophotomap on the upper (a) and lower  

(c) test field. Field cross-sections (yellow) on the analytical hillshading 315 degrees  

and 35 degrees on the upper (b) and lower (d) test field 

 

Local Relief Model (LRM)  

Local Relief Model (LRM) was developed for mountainous regions and produces a 

model in which macrotopography is reduced while retaining the integrity of microtopography 

[9]. The LRM image was created using a tool implemented in the ArcGIS environment [34] by 

applying the following steps:  

1 Using low pass filters on the DTM. The parameters to choose from were: [a] 

Neighbourhood: Circle, Rectangle, Annulus, Wedge, Irregular, Weight; [b] Size of the mask in 

pixels or map units; [c] Statistic Type: mean, mix, min, std, range, sum. 

The smoothed height model (SHM) is the first approximation of large-scale landscape 

forms. The mask size of a low pass filter determines the size of features that will be highlighted 

in the LRM. Thus, assuming the distance between the plough ridges to be 1.25 – 1.50m, the 

mask size of 5 pixels was used at first.  

2 Computing Digital Model (DM) by subtracting the SHM from the DTM. By 

subtracting the smoothed height model from the DTM, the first approximation of local relief is 

obtained: only minor morphological features are retained in the model, while large-scale 

topographic forms are eliminated.  

3 Extracting the h = 0 contour from DM, the result is DM0.  

4 Extracting the height from the DTM, coinciding with the DM0, creating a simplified 

Surface DTM, (simplified Surface = purged DTM), interpolating the final LRM. 

This processing step creates a cleared DTM from the DTM points along the contour lines 

for which height h = 0 in the LRM. The result is the so-called cleaned DEM that represents 

large-scale landscape forms after eliminating small terrain forms. The final LRM is the result of 
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subtracting this refined DTM from the original DTM. The resulting LRM reflects information 

about the heights of small-scale objects in relation to the entire landscape.  

The LRM algorithm is used to detect local changes by examining the nearest 

neighbourhood. It highlights local field differences with the rejection of large morphological 

forms. By applying the above steps, small off-road forms are sharpened. According to Kiarszys 

and Banaszek [35], the LRM method works well for detecting convex objects, such as 

embankments or burial mounds. 

Parameterisation of the shape and size of the mask as well as statistics were carried out 

in the conducted research. 

Considering the shape of the mask with the following sizes, rectangle - size 5, circle - 

radius 2, and annulus with parameters 1, 3, the derived images give very similar results in a 

visual evaluation, which can be seen in the profiles (Figs. 6 and 7). The rectangle mask was 

selected for further analysis. Regarding the calculation of the mask size, in the case of circle and 

annulus it is 1 + 2R, where R is the radius, so in the presented examples (Figs. 6 and 7) all types 

of masks have similar search areas. 

However, if we take into account the size of the rectangle mask (Figs. 8 and 9), i.e., the 

side with a length of 2.5 or 10 pixels, large amplitudes can be noticed for the side of 10 pixels 

long. 

The change of statistics between mean, mix, min, std, range, sum did not result in 

significant differences in the tested area. 

To sum up the analysis on the LRM, an image with the following parameters was 

selected for further comparisons: rectangle-shaped mask with a side of 10 pixels, statistics type: 

mean.  

 

 
Fig. 6. Sample profiles (id = 0) on LRM images for the same search radius ~ 5 pixels with different masks: 

annulus (radii = 1.3 pixels), circle (radius = 2 pixels), rectangle (side = 5 pixels) and  

wedge (starting angle = 0o end angle = 90o, radius = 2 pixels) 

 

 
Fig. 7. Sample profiles (id = 1) on LRM images for the same search radius ~ 5 pixels with different masks: 

annulus (radii = 1.3 pixels), circle (radius = 2 pixels), rectangle (side = 5 pixels) and  

wedge (starting angles = 0o end angle = 90o, radius = 2 pixels) 
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Fig. 8. Sample profiles (id = 0) on LRM images for the same mask –  

rectangle with a different side length: 10,5 and 2 pixels 

 

 
Fig. 9. Sample profiles (id = 1) on LRM images for the same mask - rectangle with  

a different side length: 10, 5 and 2 pixels. 

 

Sky-View Factor (SVF) 

The Sky View Factor (SVF) is a parameter that measures the portion of the sky visible 

from a certain point [11]. It is determined by the formula (1) [36]: 

 

     (1), 

 

where: γ is the vertical angle of the relief horizon in the specified direction, n is the number of 

directions used to estimate the vertical angle of the relief horizon. 

The SVF ranges between 0 and 1. It is calculated for the specified range (r) – search 

radius. If there is no obstacle disturbing the visibility of a given point within the defined range 

(r), then the value is the largest and equals 1. Each element interfering with the visibility of 

hemisphere causes a decrease in this value. In the visualisation of the results of this analysis, 

flat areas, ridges or peaks appear in light colours, and depressions are dark because less sky is 

visible. In this method, due to calculations only for angles above the virtual horizon, concave 

forms are reflected much better than convex forms. 

The results of this analysis are completely shadowless because there is no directional 

illumination. The hemisphere is assumed to be equally bright throughout its area. As a result, it 

is impossible to understand altitude relations in the study area. However, this only applies to 

large geomorphological structures. In their case, when analysing the results, it is necessary to 

use other methods of visualisation, or a height measurement is needed [35]. 

The main parameters that influence the SVF-based relief visualisation are the number of 

horizon search directions and the maximum search radius. Taking into account the shape of the 

searched objects (ploughing traces), where the distances between the ploughing furrows is 

about 1.5 meters, it was decided that the search radius would be 5 pixels, i.e., 1.25 meters. This 

choice is confirmed by the profiles (Fig. 10). The largest amplitudes and the clearest furrows 

are visible in the SVF image with the smallest search radius. Following the suggestions of 

Zaksek [11] and Dozier [37] as well as the analyses of profiles (Fig. 11), 8 horizon search 
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directions were applied. Additionally, the examined image was also denoised, i.e., individual 

pixels that are usually the result of data collection or processing were removed. It was found 

that when testing such small forms, these single pixels may distort the results. The SVF 

visualisation was made using a Relief visualisation Tool [10, 11]. 

 

 
Fig. 10. Sample profiles (id = 2) on SVF images for the same number of horizon directions = 8,  

with a different search radius of 5, 10 and 20 pixels 

 

 
Fig. 11. Sample profiles (id = 2) on SVF images for the same search radius = 5 pixels with  

a different number of horizon directions - 32, 16 and 8 directions 
 

Openness Positive and Negative (OPEN_POS/OPEN_NEG) 

The openness technique computes two vertical angles for each pixel: the first one - 

relative to the zenith, the other one - to the nadir [38]. The angles are calculated on terrain 

profiles derived from a tested point, along at least eight directions (N, NW, W, SW, S, SE, E, 

NE) within the assumed search radius. Starting from the pixel under consideration, the greatest 

possible zenith or nadir angle is determined along each profile [12]. Unlike SVF, these activities 

are not limited by the horizon. The mean value of all angles relative to the zenith is positive 

openness, and the averaging of the angles relative to the nadir is negative openness. The 

obtained values may theoretically vary from 0° to 180°. When interpreting the results, in the 

Openness Positive images, small values of angles relative to the zenith indicate concave forms, 

while in the Openness Negative images, small values of angles relative to the nadir indicate 

convex forms. Perfectly flat surfaces, whether horizontal or inclined, have opening values of 

90° [12]. A very important parameter in this method is the search radius. It determines which 

topographic elements will be ignored when calculating the openness value for a specific 

location. With small search distances, local microtopographic differences will increase, with a 

large search radius (several hundred meters), river valleys and hill tops will be emphasized [35]. 

Taking into account the objects studied in this paper and having analysed the profiles 

(Figs. 12 and 13), a search radius of 5 pixels, i.e., 1.25 meters, and 8 search directions were 

selected. 

The openness visualisation was made using a Relief visualisation Tool [10, 11]. 
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Fig. 12. Sample profiles (id = 0) on Openness Positive (OP) and Openness Negative (ON) images for the same 

number of horizon directions = 8, with a different search radius - 5, 10 and 20 pixels. 

 

 
Fig. 13. Sample profiles (id = 0) on Openness Positive (OP) and Openness Negative (ON) images for the same 

search radius = 5 pixels with a different number of horizon directions - 8, 16 and 32 directions 

 

Topographic Position Index (TPI) 

The Topographic Position Index (TPI) compares the value of height assigned to a given 

cell to the mean value calculated for the previously determined neighbourhood of this cell [13], 

according to the formula (2) [29]: 

 

       (2), 

 

where: M0 = elevation of the model point under evaluation, Mn = elevation of a grid, n = the 

total number of surrounding points included in the evaluation. 

The shape of the neighbourhood can be any: rectangle, circle, ring, wedge, or custom. 

The calculations presented above can give positive or negative values. Cells for which a 

TPI > 0 are higher than the tested neighbourhood, and those with a TPI < 0 are lower than the 

tested neighbourhood. Due to the fact that the tested elements - traces of plough furrows - are 

about 1.5m in size, in the case of other options, the mask size was 5-7 pixels.  

The analysis was done in SAGA GIS 7.9.0 where mask selection is limited to circle and 

annulus. In addition, the distance weighting function had to be selected with the following 

parameters: [0] - no distance weighting, [1] - inverse distance to a power, [2] - exponential, [3] - 

Gaussian. 

First, different types of masks were tested, with different parameters. Then, the masks 

were checked in all variants of distance weighting. Selected results are shown below. 

From the graph (Fig. 14) it can be seen that the greatest amplitudes occur with the 

annulus mask with radii 1, 3, and with the Gaussian distance weighting option, bandwidth: 1. A 

comparison of different methods of weighting distances for the annulus mask with radii 1, 3 can 

be seen in figure 15, then the situation repeats itself, Gaussian, bandwidth: 1. can be 

distinguished. 
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Fig. 14. Sample profiles (id = 0) on TPI images for the mask (red) circle, radius = 2, Gaussian distance weighting, 

bandwidth: 35 (green) circle, radius = 2, Gaussian distance weighting, bandwidth: 75 (blue) annulus, radii = 1, 3, 

Gaussian distance weighting, bandwidth: 1 (orange) annulus, radii = 1, 3, Gaussian distance weighting, bandwidth: 35 

(black) annulus, radii = 1, 3, Gaussian distance weighting, bandwidth: 75 

 

 
Fig. 15. Sample profiles (id = 0) on TPI images for the annulus mask, radii = 1, 3, for various distance weighting 

function options; (red) no distance weighting (green) exponential, bandwidth: 1 (blue) Gaussian, bandwidth: 1 (black) 

inverse distance to a power, power = 3 

 

Taking into account the results of TPI analyses, the TPI image created based on the 

annulus mask of radii = 1, 3, Gaussian distance weighting, bandwidth: 1 was selected for 

further comparisons.  

Morphometric Features - Minimum Curvature 

The curvature map calculates the relative change in slope and can be viewed as the value 

of the second order derivative of DEM at a point. Numerous equations and definitions can be 

found in the literature, but both definitions and equations often contradict each other. For 

example, "plan curvature" is defined as the curvature of a cross-section of a landscape 

intersecting the XY plane or the curvature of a plane intersecting the plane of normal slope and 

perpendicular to the direction of slope. Some sources add negative signs to the equations, thus 

reversing the signs of the curvature values, while others do not. There are three methods 

commonly used to calculate curvature from raster elevation models. The first one was proposed 

by Evans [39], the second method proposed by Zevenbergen and Thorne [40] and the third 

method proposed by Shary [41].  

ArcGIS Spatial Analyst uses Zevenbergen and Thorne's method while SAGA GIS and 

LandSerf use the Evans approach. The solution proposed by Shary [41] has not been 

implemented in any software but its results are very close to the Evans method [42]. All 

approaches use a moving 3×3-cell window and calculate the curvature based on 9 raster cells in 

the window. The difference between the approaches is the use of a different polynomial 

parameterisation, the Evans approach fits the curve to 9 elevation points using a 6-parameter 

polynomial [39], while Zevenbergen and Thorne's method uses a 9-parameter polynomial. 

Florinsky [43] favours the Evans approach because it filters out small random errors in the 

original DEM compilation. Florinsky [44] also shows mathematically that the Evans' method is 

more precise than the Zevenbergen & Thorne method [45] argues that quadratic-based 

algorithms (such as the Evans method) are more stable than partial quadratic-based algorithms 

such as Zevenbergen & Thorne’s. GIS systems typically offer the calculation of 7 types of 

landscape curvature as a complete characterisation of the landscape [14]: 
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- profile convexity (intersecting with the plane of the Z axis and aspect direction); 

- plan convexity (intersecting with the X Y plane); 

- longitudinal curvature (intersecting with the plane of the slope normal and aspect      

direction); 

- cross-sectional curvature (intersecting with the plane of the slope normal and 

perpendicular aspect direction); 

- maximum curvature (in any plane); 

- minimum curvature (in any plane); 

- mean curvature (in any plane). 

Taking into account the data and the goal of obtaining the discriminant of minimum 

differences, in this case only the result for Morphometric Features - Minimum Curvature should 

be considered. The minimum curvature is measured perpendicularly to the direction of the 

maximum curvature. The maximum curvature is measured in any direction. The minimum 

curvature is calculated on the basis of (3): 

                     (3) 

where: a, b, c - are the coefficients of the polynomial. 

In the experiment, the Evans model was used in a large-scale approach by adjusting 

square parameters to a window of any size. This is the method proposed by Jo Wood [14] and 

implemented in LandSerf, GRASS and SAGA GIS. 

In the experiment, kernel values of 3, 5, 7, 9 and 11 were examined, the results of which 

for the examined areas are presented in graphs (Figs. 16 and 17). 

 

 
Fig. 16. Sample profiles (id = 0) in Minimum Curvature images for the kernel value: 3 - yellow (MINIC1), 5 - blue 

(MINIC2), 7 - purple (MINIC3), 9 - red (MINIC4) and 11 - orange (MINIC5) 

 

 
Fig. 17. Sample profiles (id = 1) on Minimum Curvature images for the kernel value: 3 - yellow (MINIC1), 5 - blue 

(MINIC2), 7 - purple (MINIC3), 9 - red (MINIC4) and 11 - orange (MINIC5) 

 

Using the Morphometric Features - Minimum Curvature analysis, the use of a small 

kernel (Fig. 16 and 17/MINIC1) on selected test objects turned out to expose noise. However, 

kernels with values from 7 pixels to 11 (Fig. 16 and 17/MINIC3, MINIC4, MINIC5) generated 

similar responses in both cases. For these values, an increase in local minima and local maxima, 

and a smoothing of the values in between can be observed. This confirms the assumption that 

increasing the kernel value in this analysis is not advisable for the detection of the microrelief.  

As can be seen from the graphs (Fig. 16 and 17) in terms of variation of amplitude and variation 



I. BASISTA et al.  

 

 

INT J CONSERV SCI 14, 1, 2023: 131-158 144 

of values characterising the microrelief, the result obtained for a kernel equal to 5×5 pixels is 

satisfactory (Fig. 16 and 17/MINIC2). 

Terrain Ruggedness Index (TRI) 

The Terrain Ruggedness Index (TRI) is a measure developed by Riley et al. [16], which 

expresses the magnitude of difference in elevation between adjacent cells of a digital elevation 

grid model. The process calculates the difference in elevation values between a central cell and 

the eight surrounding cells. Then, all height difference values are squared in order to obtain 

positive values, which are then averaged.  The terrain ruggedness index is derived by the square 

root of the averaged value and corresponds to the average change in height between any point 

on the grid and the surrounding area. The TRI expresses the difference in elevation between 

adjacent cells of a digital elevation grid (4).   

              (4), 

where: i, j is the max cell size and 0,0 is the min. cell size in processed data of the elevation 

value. 

The Terrain Ruggedness Index (TRI) is a secondary geomorphometric parameter used to 

describe and quantify local relief. M. Różycka at al. [46] investigated its usefulness in 

geomorphological studies of landslides; the TRI proved to be capable of differentiating 

landslide populations into smaller groups. The TRI is applied in studies of catchments of water, 

with different roughness characteristics, located in mountainous areas [47]. The TRI is most 

commonly used in studies of surface roughness identifying typical morphological features that 

may reflect mass deposition of gravity flow (landslides and movement of earth masses) [48, 

49]. In a planned study on the detection of modern traces of forest ploughing by studying 

micro-morphological changes, the TRI was investigated using SAGA GIS. The implemented 

TRI algorithm requires the following parameters: search mode, search radius, weighting 

function. The search radius is the metric distance of the index action, and search mode defines a 

square or circular shape for the action area of the function calculation. The last factor controls 

the distance weighting calculation method and can take values: [0] - no distance weighting, [1] - 

inverse distance to a power, [2] - exponential, [3] - Gaussian. 

An analysis of the variation of the Search Mode parameter was performed for sample 

areas, where 0 indicates a square neighbourhood and 1 indicates a Circle neighbourhood. The 

analysis showed that identification of ploughing traces would be more effective if the Search 

Mode parameter = 1, i.e., in the analysis of the Circle surroundings.  

The analysis showed no significant changes with different values of the Weighting 

Function parameter. Available choices are: [0] no distance weighting, [1] inverse distance to a 

power, [2] exponential, [3] Gaussian.  

The search radius parameter is an integer value of cells. In SAGA GIS, this parameter is 

calculated according to the formula: 1+2* radius given as a number of cells in a kernel. The 

results of the analyses are illustrated by cross-section profile for sample lines (Figs. 18 and 19). 

 

Fig. 18. Sample profiles (id = 0) in TRI images for kernel values: 3 - green (TRI1), 5 - red (TRI2),  

7 - blue (TRI3), 9 - black (TRI4) 
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Fig. 19. Sample profiles (id = 1) in TRI images for kernel values: 3 - green (TRI1), 

5 - red (TRI2), 7 - blue (TRI3), 9 - black (TRI4) 

 

By analysing the values obtained for the Terrain Ruggedness Index (TRI) analysis, in 

which the kernel value was the main differentiating component of the results obtained, extreme 

values can be rejected in advance. With the smallest kernel, the amplitude is large but the noise 

value is also very high. This will result in detecting large overestimates of ploughing traces and 

detecting them in places where they do not exist. On the other hand, the value of the maximum 

kernel works exactly in the opposite way, the black line in the graphs (Fig. 18 and 19) is 

smoother. Given the other results, it is hard to clearly indicate a better solution. The field survey 

allowed us to decide that the 7×7 kernel is the most suitable one.  

 

Results 

 
Algorithm for testing the results of parameterisation of DTM derivatives 

As a result of the tests, suitable parameters were selected for each algorithm. The table 

below presents a list of the tested algorithms along with the adopted parameters which showed 

the highest amplitudes on the tested profiles (Table 2). 

 
Table 2. The list of analysed algorithms with adopted parameters 

 

Algorithm Search radius Other parameters 

Local Relief Model 10 pixels Search Mode = rectangle 

Sky-View Factor 5 pixels Search Directions = 8 

Openness positive 5 pixels Search Directions = 8 

Openness negative 5 pixels Search Directions = 8 

Topographic Position Index 7 pixels Search Mode = annulus 

Weighting Function = Gaussian, bandwidth: 1. 

Minimum Curvature 5 pixels  

Terrain Ruggedness Index 7 pixels 

 

Search Mode = circle, 

Weighting Function = no distance weighting 

 

Seven output images (DTM derivatives) were obtained and compared with each other. 

First, a visual comparison of the images was made. Then, the profiles generated along 5 test 

lines were compared (Fig. 5). The resulting images were also subject to automatic detection 

based on morphological filters in order to detect traces of ploughing.  

Visual comparison 

In our study, seven DTM derivatives were compared visually. Bright pixels in the 

pictures show terrain elevations, while dark ones show depressions. 

In the upper test field (Fig. 5a and b), there are drainage ditches in the depression, and 

traces of ploughing around them. One strip of field (clearer) runs from the north-west to the 

south-east (left side of the photo), and another strip of field (less distinct) runs from the north-

east to the south-west (right side of the photo). The latter ploughing traces can be characterised 

by shallower and not so parallel furrows as in the case of the first strip of the cultivated field. In 

each of the examined images, these two characteristic traces of furrows are visible. Starting 
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with the best image, the most distinct traces of ploughing appear in the SVF image (Fig. 20b), 

however, in some places they were disturbed by depressions from this area. The next two 

pictures, Openness Positive (Fig. 20c) and Openness Negative (Fig. 20d), also show traces of 

ploughing very clearly. These images are less contrastive compared to the SVF, but larger 

terrain forms (depressions) have been eliminated so that ploughing traces are clearly visible 

throughout the test field. The LRM image (Fig. 20a) has a similar contrast to OPEN_POS and 

OPEN_NEG but is also disturbed by the appearance of depressions. Clear depressions, the 

bottoms of the furrows, can be seen in the MIN_CURV image (Fig. 20e), they are very 

contrasting, but the tops of the furrows are very blurred. The TPI image has low contrast, hence 

ploughing traces are not as clearly visible as in, for example, OPEN_NEG/POS. It is the most 

difficult to find traces of arable fields in the TRI image. Only the tops of furrows can be 

recognised there. Although this image has high contrast, larger terrain forms, such as drainage 

ditches or depressions are better detailed here.  

 

 
 

Fig. 20. Upper test field visualisation: a) Local Relief Model, b) Sky-View Factor,  

c) Openness Positive, d) Openness Negative, e) Minimum Curvature,  

f) Topographic Position Index, g) Terrain Ruggedness Index 

 

In the lower test field (Fig. 5c and d) there are three arable fields. The first one - in the 

north-west, the second one - in the south, and the third one - in the east. The central field (in the 

south) has the most regular shape - straight parallel lines and the deepest furrows, the remaining 

fields are characterised by shallower and wavy furrows. In each of the DTM derivatives, these 

three fields are visible. As in the case of the upper test field, the most visible traces of arable 



MICRO-MORPHOLOGICAL ANALYSES OF DIGITAL TERRAIN MODEL IN SEARCH OF TRACES  

 

 

http://www.ijcs.ro 147 

fields are in the SVF image (Fig. 21b). Field bays from the times of Roman influence are 

clearly visible there - three horizontal stripes running on the eastern side of the test field. The 

plough furrows are also clearly visible in the OPEN_POS and OPEN_NEG images (Fig. 21c 

and d). Additionally, in the OPEN_NEG image, the ridges of the furrows are wider and more 

visible. In the LRM, MIN_CURV and TPI images (Fig. 21a, e and f), arable fields are similarly 

recognisable. It is the most difficult to recognise traces of farmland in the TRI image (Fig. 21g). 
 

 
 

Fig. 21.  Visualisation of the lower test field: a) LRM, b) SVF, c) Openness Positive,  

d) Openness Negative, e) Minimum Curvature, f) Topographic Position Index,  

g) Terrain Ruggedness Index 

 

Cross-section amplitude testing 

The resulting images were compared with each other using profiles generated along five 

test lines. The profiles were made on images which were first standardised and normalised. 

Standardisation activities were performed in SAGA according to the following steps:  

Step 1. Standardising the values of a grid. The standard score (z) (5) is calculated as a 

raw score (x) less arithmetic mean (m) divided by a standard deviation (s).  

z = (x - m) / s                       (5) 
Step 2. Normalising the values of a grid. Rescaling all grid values to fall in the range 

from 0 to 1. 

Pixels in normalised images have values ranging from 0 to 1 and an expected mean 

value of 0, and a standard deviation of 1. Values oscillating close to 0 show depressions of the 
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terrain, while values of about 1 show elevations. The exception is the visualisation of negative 

openness, where values close to 0 mean elevations, and values close to 1 mean lower terrain.  

The profiles were made in five characteristic places of the study area (Fig. 5). Each of 

the profiles were about 30 meters long. Four profiles with the identifier’s id = 0, id = 1, id = 3, 

and id = 4 were made in places where, during field research, traces of ploughing were poorly 

visible.  

 

 

 

 

 
Fig. 22. Comparison of the five profiles along the test line: 

0. id = 0, made on LRM, SVF, OPEN_POS, OPEN_NEG, TPI, TRI and MIN_CURV images 

1. id = 1 made on LRM, SVF, OPEN_POS, OPEN_NEG, TPI, TRI and MIN_CURV images. 

2. id = 2 made on LRM, SVF, OPEN_POS, OPEN_NEG, TPI, TRI and MIN_CURV images 

3. id = 3 made on LRM, SVF, OPEN_POS, OPEN_NEG, TPI, TRI and MIN_CURV images 

4. id = 4 made on LRM, SVF, OPEN_POS, OPEN_NEG, TPI, TRI and MIN_CURV images 

 

The comparison of profiles made on seven DTM-derivatives showed that the SVF and 

OPEN_NEG profiles definitely best reflect the shape of furrows in the arable field. These 

profiles are characterised by the most regular, sinusoidal shape with the highest amplitudes of 

values. The amplitudes are on average about 0.15 to a maximum of 0.3 (Fig. 22; Profile 1-5). 
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Profiles generated for the group of images TPI, OPEN_POS, LRM are very similar. 

Their shape is also sinusoidal, but with much smaller amplitudes, not exceeding 0.1 (Fig. 22. 

Profiles 1-5). 

The profiles of the other two images, MIN_CURV and TRI, are the flattest and the least 

regular. The appearing amplitudes reach values of about 0.05 (Fig. 22; Profiles 1-5). 
 

Automatic detection of ploughing traces and its evaluation 

DTM derivatives were subjected to the process of automatic detection of ploughing 

traces. The upper and lower test area in the range shown in Figure 5. allow for a visual 

comparison of the examined images. However, these fields are too small to properly verify the 

automatic detection. The arable fields cover virtually the entire upper test area, and it would be 

difficult to evaluate the results of image filtration. For this reason, it was decided to enlarge the 

test fields (Fig. 23). The upper and lower test fields are squares with sides approximately 500 

meters and 250 meters long.  

 

 
 

Fig. 23. Top (left) and bottom (right) test field. Blue - the range of the test fields for visual comparison,  

green - the range of the test fields for automatic detection of ploughing traces 

 

In general, the process of automatic detection of arable field tracks consisted of the 

following stages: 

- Filtering images with a median filter to eliminate noise [50]; 

- Thresholding and filtering with the Sobel filter for edge detection [51]); 

- Dilating, eroding and re-dilating to highlight ploughed areas [52]; 

- Selecting areas larger than 5000 pixels, i.e., about 300m2, in order to eliminate small 

areas. 

The method is simple, quick to calculate, and gives good results. All the above activities 

were performed in the Matlab environment. The image filtering results are presented in (Fig. 

25. and 26.). These are binary images, where the value 1 (white) indicates arable fields, and the 

value 0 (black) indicates the rest of the area.  

By comparing visually, the obtained results of image filtration with the manual 

vectorisation of the boundaries of arable fields (Fig. 24) it can be seen that in the case of the 

upper test field (Fig. 25), the most traces of ploughing were detected on the Openness Negative, 

Openness Positive and TPI images, fewer traces can be seen on the Sky View Factor and 

Minimum Curvature images, and the fewest traces are visible in LRM and TRI. Unfortunately, 

in virtually every image, a certain group of pixels has been misclassified as arable field. The 

number of misclassified pixels increases when more traces of ploughing are detected in an 

image. In the visual assessment, the best detection effects were obtained on the TPI image. 
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Fig. 24. Manual vectorisation of ploughing traces (red) on the top (left) and bottom (right) test fields. 

 

 
 

Fig. 25.  The upper test fields. The result of the automatic detection of ploughing traces (white colour).  

The borders of the fields vectorised by the operator are shown in red 

 

In the case of the bottom test field (Fig. 26), it is very difficult to indicate which images 

were best classified. The largest number of correctly classified pixels was obtained in the 
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Openness Negative, TRI, Openness Positive, TPI, SVF and Minimum Curvature images. Only 

the classification made on the LRM image differs significantly from the others. In this image, 

the fewest pixels have been correctly classified. In the lower test field, there are places where 

the filtration highlights objects that are not traces of ploughing. These are a forest road, running 

on the left side from north to south, and the slope of the hill, running on the right side, in an arc 

from east to south. 

 

 

 
Fig. 26.  The lower test fields. The result of the automatic detection of ploughing traces (white colour). The 

borders of the fields vectorised by the operator are shown in red 

 

The above observations confirm the results of the classification evaluation carried out 

with the use of the Kappa coefficient [53]. Table 3 shows the results of the classification 

assessment for the top and bottom test fields. The classifier's accuracy shows false positives 
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where pixels are incorrectly classified as a known class when they should have been classified 

as something else. The Total row shows the number of points that should have been identified 

as a given class, according to the ground truth data. The operator’s accuracy is a false negative 

where pixels of a known class are classified as something other than that class. The Total 

column shows the number of points that were identified as a given class, according to the 

classified map. The classification evaluation was performed in the ArcGIS software. 

 
Table 3. Classification evaluation results for the top (left) and bottom (right) test fields 

OPERATOR OPERATOR

ClassValue C_0 C_1 Total Accuracy Kappa ClassValue C_0 C_1 Total Accuracy Kappa

C_0 1 887 450    371 986       2 259 436    0.84 C_0 677 640   64 715      742 355       0.91

C_1 223 140       1 517 424    1 740 564    0.87 C_1 119 731   137 914    257 645       0.54

Total 2 110 590    1 889 410    4 000 000    - Total 797 371   202 629    1 000 000    -          

Accuracy 0.89 0.80 - 0.85 Accuracy 0.85 0.68 -               0.82

ClassValue C_0 C_1 Total Accuracy Kappa ClassValue C_0 C_1 Total Accuracy Kappa

C_0 1 917 230    421 179       2 338 409    0.82 C_0 697 727   66 534      764 261       0.91

C_1 193 414       1 468 177    1 661 591    0.88 C_1 99 610     136 129    235 739       0.58

Total 2 110 644    1 889 356    4 000 000    - Total 797 337   202 663    1 000 000    -          

Accuracy 0.91 0.78 - 0.85 Accuracy 0.88 0.67 -               0.83

ClassValue C_0 C_1 Total Accuracy Kappa ClassValue C_0 C_1 Total Accuracy Kappa

C_0 1 773 749    319 012       2 092 761    0.85 C_0 684 616   52 093      736 709       0.93

C_1 336 873       1 570 366    1 907 239    0.82 C_1 112 732   150 559    263 291       0.57

Total 2 110 622    1 889 378    4 000 000    - Total 797 348   202 652    1 000 000    -          

Accuracy 0.84 0.83 - 0.84 Accuracy 0.86 0.74 -               0.84

ClassValue C_0 C_1 Total Accuracy Kappa ClassValue C_0 C_1 Total Accuracy Kappa

C_0 1 956 735    571 212       2 527 947    0.77 C_0 732 451   80 292      812 743       0.90

C_1 153 875       1 318 178    1 472 053    0.90 C_1 64 906     122 351    187 257       0.65

Total 2 110 610    1 889 390    4 000 000    - Total 797 357   202 643    1 000 000    -          

Accuracy 0.93 0.70 - 0.82 Accuracy 0.92 0.60 -               0.85

ClassValue C_0 C_1 Total Accuracy Kappa ClassValue C_0 C_1 Total Accuracy Kappa

C_0 1 945 754    623 227       2 568 981    0.76 C_0 672 851   69 804      742 655       0.91

C_1 164 890       1 266 129    1 431 019    0.88 C_1 124 530   132 815    257 345       0.52

Total 2 110 644    1 889 356    4 000 000    - Total 797 381   202 619    1 000 000    -          

Accuracy 0.92 0.67 - 0.80 Accuracy 0.84 0.66 -               0.81

ClassValue C_0 C_1 Total Accuracy Kappa ClassValue C_0 C_1 Total Accuracy Kappa

C_0 2 002 451    1 183 724    3 186 175    0.63 C_0 690 528   79 020      769 548       0.90

C_1 108 163       705 662       813 825       0.87 C_1 106 804   123 648    230 452       0.54

Total 2 110 614    1 889 386    4 000 000    - Total 797 332   202 668    1 000 000    -          

Accuracy 0.95 0.37 - 0.68 Accuracy 0.87 0.61 -               0.81

Local Relief Model Local Relief Model

ClassValue C_0 C_1 Total Accuracy Kappa ClassValue C_0 C_1 Total Accuracy Kappa

C_0 2 064 334    1 298 123    3 362 457    0.61 C_0 759 763   162 718    922 481       0.82

C_1 46 263         591 280       637 543       0.93 C_1 37 570     39 949      77 519         0.52

Total 2 110 597    1 889 403    4 000 000    - Total 797 333   202 667    1 000 000    -          

Accuracy 0.98 0.31 - 0.66 Accuracy 0.95 0.20 -               0.80
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The Kappa coefficient may take values in the range <-1; 1>. Negative values mean that 

the agreement of the evaluators (automaton and operator) is lower than the chance of their 

coincidence, i.e., no match. The 0 values are the rates agreement at a random agreement level. 

Values above 0 are commonly interpreted on the basis of a comparative scale (Table 4.) 

developed by Landis and Koch [54].  
 

Table 4. Interpretation of the values taken by the Kappa coefficient according to Landis and Koch 

 
Kappa Strength of Agreement 

<0.00 Poor 

0.00-0.20  Slight 

0.21-0.40  Fair 

0.41-0.60  Moderate 

0.61-0.80 Substantial 

0.81-1.00 Almost Perfect 

 

The upper test field was best classified (at the Substantial level) on the images: TPI 

(Kappa = 0.70), Openness Positive (Kappa = 0.69), Openness Negative (Kappa = 0.67), Sky-

View Factor (Kappa = 0.63). At the Moderate level - Minimum Curvature (Kappa = 0.60). The 

lowest score, at the Fair level, was the classification on the TRI (Kappa = 0.33) and LRM 

(Kappa = 0.30) images. 

The lower test field was classified in almost all images at the Moderate level: Sky View 

Factor (Kappa = 0.54), Openness Negative (Kappa = 0.54), Openness Positive (Kappa = 0.52), 

TPI (Kappa = 0.8), Minimum Curvature (Kappa = 0.45), TRI (Kappa = 0.45). The exception is 

the LRM image (Kappa = 0.19), where the strength of agreement is at the Slight level.  

Given the results obtained for the lower test field, a much lower accuracy was obtained 

than for the upper test field. This is due to the fact that the Kappa coefficient is sensitive to 

changes in the distribution of values for pairs of consistent 0-0 and 1-1 decisions. The greater 

the concentration of scores in one of the cells for pairs of 0-0 or 1-1 cases, the lower the value 

of the Kappa coefficient. On the other hand, "shifting" the results of observations for pairs 0-1 

and 1-0 has no major impact on its value. In the case of the upper test field, the distribution of 0 

and 1 in the reference image (classified by the operator) is even (50/50). In the case of the lower 

test field, in the reference class there is a large concentration of pixels around the value of 0 

(80% of all pixels). Hence the supposition that the Kappa coefficient would have had a higher 

value, had it not been for the specificity of this image.  

 

Conclusions 

   

Identification of ploughing traces in forested areas with the use of ALS provides a wide 

testing ground. This article proposes the use of DTM derivatives (built on the basis of data from 

ALS) to detect sites where ploughing has been recently performed. By "recently" it is meant up 

to 10 years ago. 

First, as a part of the research, the following algorithms were parameterised with the use 

of the field profiles Local Relief Model, Sky-View Factor, Openness Positive, Openness 

Negative, Topographic Position Index, Morphometric Features - Minimum Curvature, and 

Terrain Ruggedness Index. The comparison of the profiles allowed for the selection of the best 

parameter values for each algorithm. On their basis, seven DTM-derived images were generated 

that best represented arable fields.  

Subsequent work included a visual comparison of the derived images and the 

comparison of t profiles made along five test lines on each of the images. This allowed for the 

selection of images with the clearest traces of ploughed fields. SVF and Openness negative 
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images turned out to be the best in this case. Then, automatic detection of ploughing traces was 

performed with the use of morphological filters. The detection results were compared with the 

manually vetted borders of arable fields. At this stage, in terms of the visual assessment, the 

results were satisfactory. Nevertheless, an evaluation of the classification was also done using 

the Kappa coefficient. Substantial and Moderate levels were obtained for the Topographic 

Position Index, Openness Positive, Openness Negative, Sky-View Factor, and Minimum 

Curvature images. The classification in the Terrain Ruggedness Index image (Moderate / Fair 

level) was assessed worse, and the lowest rating was obtained by the classification in the Local 

Relief Model image (Fair/Slight level).  

The article attempts to diagnose the problem of identifying traces of forest crops within 

potential archaeological sites. By analysing the images of DTM derivatives, it is possible to 

indicate the images of Openness Positive, Openness Negative, Sky-View Factor as well as those 

in which field microforms, such as ploughing traces, are best presented. Their use will allow the 

operator to easily indicate places of forest cultivation. 

To automate the process of detecting farmland, it is also worth using the Openness 

Positive, Openness Negative, Sky-View Factor and Topographic Position Index images. On 

their basis, the filtering of the images shows the places of ploughing traces at a satisfactory 

level. It is worth noting that a relatively simple and fast method based on morphological filters 

was used for automatic detection. The use of more complex methods here, such as Gabor's 

textural filters or a supervised classification, could give better results for automatic detection of 

ploughing traces. This will be the subject of further research. 

The conducted research shows that it is possible to select places in forested areas with 

traces of ploughing both manually and automatically. Such identification is extremely important 

not only in the process of deconstruction and isolation of landscape features, but it is also 

significant from the point of view of conducting prospective and verification research in the 

field. The results of the analyses showing the traces of ploughing will be helpful in terms of 

research planning and assessing its effectiveness in difficult forest terrains. A comparison of the 

obtained results with potential archaeological sites will show archaeologists the location for 

field research.  
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