

COMPATIBILITY INDICATORS IN DEVELOPING CONSOLIDATION MATERIALS WITH NANOPARTICLE INSERTIONS FOR OLD WOODEN OBJECTS

Ana-Adriana TUDUCE-TRĂISTARU*, Mihaela CÂMPEAN, Maria Cristina TIMAR

Transilvania University of Brasov, Wood Engineering Faculty, B-dul Eroilor 29, 500036 Romania

Abstract

The conservation of old wooden objects is a complex domain that encapsulates science, aesthetics and art. A priority in wood conservation is the operation of consolidation. Historical wooden objects are frail and present different forms of degradation, often active infestation being present. Maintaining physical integrity and authenticity are thus priorities for the object in question. A consolidation material should not only impart sufficient mechanical strength to the object, but be compatible with all the materials that are part of the object. A myriad of new potential materials and technologies are worth special attention in solving major problems in wood consolidation. Aiming to develop new nanotechnologic consolidation materials for old wood, we conducted several researches. Before testing the benefits of adding nanoparticles into the recipe of consolidation materials for old wood, one has firstly to establish compatibility criteria and indicators between the matrix and the insertion in each case. That is the topic of the present paper. The results obtained, namely a list of compatibility indicators, represent the starting point in developing innovative consolidation materials with nanoparticle insertions.

Keywords: consolidation; wood; nanoparticles; compatibility indicators.

Introduction

From the beginning of civilisation, wood played an indispensable role in human life mainly due to its aesthetic value, its availability and its processing properties. It is, therefore, not a surprise that wood has an important place in our cultural heritage, either as structural beams, painted or gilded panels, furniture items, as shown by Timar in [1 - 3], statues and icons of both artistic and religious value etc. The use of wood, however, is not without pitfalls. It requires understanding of its complex anatomical structure [4], its physical and mechanical properties; wood is also dimensionally unstable and continuously vulnerable to deterioration caused by fungi and insects.

Most often, old wooden objects present evidence of active infestation, besides historical biological degradation by insects or fungi, who affect their structural integrity, physical and mechanical properties. The authenticity of the object threatened. Conservation of wooden objects is a complex activity because of wood's faulty defects that occur in time, conservators being confronted with a myriad of puzzling issues.

^{*} Corresponding author: adrianatuduce@gmail.com Tel/Fax: +4 0268 415315

By and large, any treatment in conservation should follow several principles, internationally established so that any attempt to develop new materials is founded on those principles, as noted by several authors in [5 - 13]:

- any material in the conservation treatment must not alter the integrity and authenticity of the object;
- any material/treatment must present potential reversibility and allow further interventions of restoration, whenever necessary;
- any material/treatment must be compatible with all the materials encapsulated by the object; the "artistic" materials are to be treated as a whole and not separately.

A consolidation treatment is usually necessary when the wooden object is seriously altered, its integrity and authenticity no longer being ensured. It is meant to provide the object with physical and mechanical resistances and properties. Once the necessity for consolidation is determined, a number of decisions must be made in regard to materials and methodology. These decisions include the choice of a consolidant, the solvent type, the solution concentration and a suitable method of application. Those choices mostly depend on the nature of the object to be treated, the type and condition of the materials, and the functional requirements of the object as shown in [14] and [15].

The general requirements of wood consolidation materials include, apart from *reversibility*, *compatibility* and *re-treatability* [12, 16], specific technical aspects related to the wood swelling and shrinking phenomena, penetration depth, uniformity of distribution, consolidant retention and toxicity levels.

A consolidation material should impart sufficient strength to the object to be conserved while also ensuring some cohesion of the disrupted structure [7, 8, 17]. In other words, a consolidation material is required to have two main properties *adhesion* and *cohesion* to finally provide the object with mechanical strength and physical properties. That is why high molecular weight organic compounds are preferred, due to their physical and chemical stability and, implicitly, resistance to weathering and aging. Such materials include natural resins, oils, waxes, collagen glues and synthetic thermoplastic or thermosetting polymers as shown by Timar *et al.* in [16].

The most recent treatment of consolidation uses soluble resins, thermoplastic synthetic polymers in solvent solution, due to its ease of application and the reversibility of the consolidation product - the polymer fixed in the wood remaining soluble in the initial solvent [11, 12, 18, 19] – its increased mechanical strength and scratch resistance, as well as its possible resistance to biological attack.

The present paper refers to a theoretical approach to develop new consolidation products with nanoparticle insertions based on compatibility indicators and constitutes a major step in choosing and testing new consolidation materials. Compatibility indicators constitute a further experimental approach, a study about the influence of nanoparticles added to current consolidation materials and, finally, to the treated wooden support.

Experimental

A theoretical analysis was carried out on the advantages and disadvantages of the currently used consolidation materials, as well as the properties of several nano-materials which may be used as fillers in the newly developed consolidation products.

Based on general and specific requirements, a consolidation material should have, and similar to the model presented by Rodrigues and Grossi in [20], specific compatibility criteria and indicators between the nano-insertions and the wooden support were established as shown in figure 1.

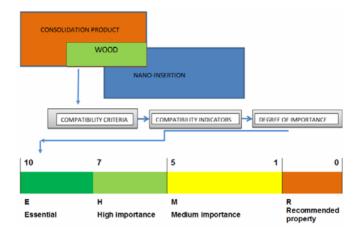


Fig. 1: Compatibility criteria and indicators between nano-insertions and the wooden support

Those compatibility criteria and indicators are in fact performance parameters relevant to the properties of consolidation materials. The quantifiable indicators were rated according to their importance in the wood conservation field, in a ratio scale from 0 to 10 and were given the codes E, essential property, H, important property, M for medium importance and R recommended properties (Fig. 1).

Results and discussions

According to the advantages and disadvantages of currently used consolidation products (Table 1) and the technical performances of nanomaterials (Table 2), the opportunities to develop new potential products with superior properties were highlighted in tables, in order to be adjusted and for further testing.

Type of consolidant	Application method	Advantages [18], [22], [9]	Disadvantages [22], [9]	Opportunities by nano-insertion
(0)	(1)	(2)	(3)	(4)
Animal glues	Soaking in hot	Reversible, Non-toxic,	Not resistant to moisture and	Moisture resistance
[12], [14], [7]	mixtures	Compatibility, Good adhesion	heat (shrinkage and swelling)	Bio protection
		Do not stain wood	May become brittle over time	Dimensional stability
		Gilded and painted wood	Poor penetration into wood	Elasticity, Increased penetrability
Waxes, beeswax	Melted wax/	Resistant to moisture,	Dust accumulation	Anti-dirt properties
and paraffin	hot mixtures	Reversible, Non-toxic	Darken in time	Fire resistance, UV
[21], [7], [12]	with resins	Resistant to organic solvents,	Reversible to heat	resistance Increased
	Saponified	No change of colour in time,	Poor mechanical resistance	mechanical properties
	wax	Chemical stability,	UV transparency	Improved elasticity
		(macromolecular compound)	Partial elasticity	
Vegetable oils,	Hot baths	May be used as plasticizers	Softening of support	Anti-dirt properties
mainly linseed oil, tung oil and	Cold mixtures	Resistant to water	Darkening	Bio-protection
colophony	with turpentine	Non-toxic	Sticky surfaces	UV resistance
[14], [12]	and phenol		Poor straightening	
Natural resins	Mixtures /	Solvent soluble - reversible	Exudation / Softening, Easily	Improved mechanical
[14]	solutions	Good adhesion, Heat reversibility,	deformable, Partially	resistance
		Transparency, Chemical stability	reversible, Moderate	UV resistance
		(macromolecular compound)	straightening, Brittle / reduced	Resistance to solvents
			elasticity, Change of colour	Anti-dirt surfaces
Cellulose	Mixtures/	Fixatives	Poor penetration, Brittle in	Improved elasticity
derivatives	solutions	Good adhesion	time, Discoloration	Colour stability
[14], [22]		Soluble in acetone, esters	Poor film formation	
			Prone to fissures and cracks	
			Yellowing in time	

Table 1. Natural and synthetic consolidation materials used for wooden supports: advantages and disadvantages

A.A. TUDUCE-TRAISTARU et al.

(0)	(1)	(2)	(3)	(4)
Synthetic	Mixtures	Good penetration (low molecular	Dust accumulation	Anti-dirt properties Bio-
adhesives	/solutions	weight), Reversibility	Brittleness	protection, Increased
[9]		Resistance to UV light		mechanical properties
				Improved elasticity
Thermoplastic	Mixtures/	Ease of use, Increased mechanical	Partial reversibility	UV resistance
resins	solutions	strength, Adhesion	Toxic	Water resistance
[9]		Resistance to water, alcohol, acids	Possible yellowing in time	Bio-protection
		Partially reversible	Plastic like appearance	Improved mechanical
		Compatible to plenty of materials	Glossy surfaces	strength
		Penetrability to porous substrates	No bio-protection	
		Soluble in organic solvent	No fire-resistance	
Thermosetting	Mixtures/	Not soluble in organic solvents	Not soluble in organic solvents	Bio-protection
resins	solutions	Good adhesion	Totally irreversible, Discoloration	Fire-resistance
[9]		Increased strength (structural	in time, Poor penetration,	Improved mechanical
		consolidation)	Darkening / Shrinkage, (melamine	strength
		Durability	formaldehyde)	
Monomers that	Mixtures/	No solvent, Durability,	Irreversible treatment	Bio-protection
polymerise in	solutions	Increased strength, Structural	Expensive technology	Fire-resistance
situ		consolidation, Abrasion		
		resistance, Water resistance,		
		Resistance to bio-degradation		

Nano-insertion	Support material	Property	Application method
Lignin fibrils / cellulose	Textile	Hydrophobicity	Brushing
whiskers	Rubber	Fire resistance	
[23]	Other materials (wood	Smart-materials	Micelle growth
	included)	Consolidation of plastic objects	Composite technology
Au, Ag [24], [25]	Wood	Bio-protection	Deposition techniques in aqueous/polymer solution
Metal oxides [26]	Wood	Self-cleaning surfaces Scratch resistance	Polymer matrix with metal oxides insertion
		Resistance to ageing	Vacuum deposition
		Fissure reduction	· · · · · · · · · · · · · · · · · · ·
		Resistance to chemical	
		substances	
		Increased adhesion	
		Durability	
		Dimensional stability	
		Resistance to natural weathering	
		Reduction of free water absorption	
Alumina [27]	Wood	Self-cleaning surfaces	Sol-gel
		Scratch resistance	Spraying
		Fire resistance	Polymer matrix
$TiO_2[28], [29]$	Wood	UV protection	Sol-gel
		Fire resistance	CVD
		Self-cleaning	Sputtering
		Water resistance (super-	Dispersions in acrylic polymers
		hydrophobic surfaces)	
7.0[20] [20]	Wood	Bio-protection	Cal aal
ZnO [29], [30]	wood	Bio-protection	Sol-gel
		Fire-resistance UV resistance	Emulsion in acrylic copolymers
		• • • • • • • • • • • • • • • • • • • •	
S:0 [21]	Wood	Water resistance Scratch resistance	C - 1 1
<i>SiO</i> ₂ [31]	wood	Good adhesion	Sol-gel
		Fire-resistance	Impregnation
		Water-resistance	
M 0 [26]		Self-cleaning	
MgO [26]		Bio-protection	Cal aal
E-0 [22]	Wood	<i>Hydrophobicity</i>	Sol-gel
FeO [32]	wood	UV protection	Liquid organic media
C [22]	X 7 J	Bio-protection	I
Cu [33]	Wood	Bio-protection	In polymer matrix

Due to the improved properties they offer to wood, the selected nano-insertions that are to be further tested are TiO_2 , ZnO and Fe_2O_3 . Nanoparticles like Fe_2O_3 are ideal from the technical performance point of view, but not entirely valid for conservation treatments since colour modifications may occur. However, further tests will outline that issue.

Table 2 synthesizes the results obtained by different authors in regard to the combination of various nano-insertions (*e.g.* cellulose whiskers, metal oxides) with different supporting materials (*e.g.* wood, textiles, rubber) focusing on the increased performances obtained by using those combinations.

The theoretical analysis led to the selection of several specific compatibility criteria and indicators between the wooden matrix and the consolidant (Table 3).

Nano-insertion	Consolidation product	Compatibility criteria	Compatibility indicators	Rating scale
TiO ₂	Wax	Chemical and physical properties:	Consolidant retention Penetration depth	E ^a 10
ZnO	Oils	affinity to wood wood	I chemation acpin	E 10
		impregnation capacity	Uniformity of	
Fe_2O_3	Thermoplastic	cohesion	distribution	E 10
	synthetic resins	adhesion	Microscopic structure	
				E 8-10
		Mechanical properties	Bending strength	
		(treated wood)	Compression strength	rrh 7
			Modulus of elasticity Scratch resistance	H ^b 7
			scraich resistance	Н 7
			Water absorption	11 /
		Hydrophobic behaviour	water abborphen	Н 5
		5 F	Swelling	M ^c 5
		Visual properties	Colour difference (ΔE)	E8/H 7
			Resistance to fire	E8/H 7
		Thermal properties		
				E 8
			Resistance to insects	
		Bio-protection	and fungal attack	Н 7
			Toxic emissions	Н /
			TOXIC EMISSIONS	
		Environmental impact		
		····· <i>T</i>		E 10
				Н7

Table 3. Theoretical compatibility criteria and indicators for wood consolidants with nanoparticle insertion

^{*a*} = essential, ^{*b*} = high importance, ^{*c*} = medium importance

Conclusions

We took a theoretical approach focused on the development of new consolidation products with nanoparticle insertion, based on a critical analysis of the currently employed wood consolidation products and the opportunities offered by some nano-insertions. The results we obtained allowed us to propose an original set of compatibility criteria, corresponding to practical quantifiable indicators and an importance rating scale for old wood consolidation products. The selected compatibility criteria and indicators require further experiments to establish the technical performances of newly engineered consolidation materials with nanoparticle insertions applied in old wood conservation. Such researches are already being conducted and the results will be published at a later date.

Acknowledgements

This paper received support from the Sectoral Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number POSDRU /88/1.5/S/59321.

References

- [1] M.C. Timar, Furniture restoration science, art and challenge, Part 1: General principles and case studies, PRO LIGNO, 3, 4, 2007, pp. 45-54.
- [2] M.C. Timar, R. Dates, Furniture restoration science, art and challenge, Part 2: Restoration of a dolls wardrobe, PRO LIGNO, 4, 1, 2008, pp. 45-54.
- [3] M.C. Timar, R. Dumitrascu, A. Aldescu, Furniture restoration science, art and challenge, Part III: Restoration of a side-table, PRO LIGNO, 4, 4, 2008, pp. 45-54.
- [4] M.C. Timar, L. Gurau, M. Cionca, M. Porojan, Wood species for Biedermeier furniture a microscopic characterisation for scientific conservation, International Journal of Conservation Science, 1, 1, 2010, pp. 3-12.
- [5] B. Appelbaum, Criteria for treatment: Reversibility, Journal of the American Institute for Conservation, 26, 2, 1987, pp. 65-73.
- [6] J. Oberlander, H. Kalman, R. Lemon, *Restoration Principles and Procedures Introduction*, Principles of Heritage Conservation (www.heritage.gov.bc.ca), Technical Paper, Series 9-11, Province of British Columbia, 1989.
- [7] A. Unger, W. Unger, Conservation of Wooden Cultural Property, IRG, 25th International Meeting, Bali, Indonesia, 1994.
- [8] A. Unger, A.P. Schniewing, W. Unger, Conservation of Wood Artifacts, Springer, Berlin, 2001.
- [9] M.C. Timar, Restaurarea mobilei Teorie si practică (Furniture restoration Theory and practice), Editura Universitătii Transilvania, 2003.
- [10] L. Ellis, A. Heginbotham, An Evaluation of Four Barrier-coating and Epoxy Combinations in the Structural Repair of Wooden Objects, Journal of the American Institute for Conservation, 43, 1, 2004, pp. 23-37.
- [11] H.V. Farmakalidis, Simple Method for Evaluation of Wood Consolidant Materials, ICONS: Approaches to Research, Conservation and Ethical Issues, International Meeting, Athens (www.iconographyalmanac.com), 12, 2006.
- [12] A. Unger, Historic Consolidants for Wooden Works of Art in Germany, COST IE0601 Meeting (www.woodculther.com), Prague, 2009.
- [13] I.C.A. Sandu, I. Sandu, P. Popoiu, A. van Saanen, Aspecte metodologice privind conservarea stiintifica a patrimoniului cultural, Editura Corson, Iasi, 2001.

- [14] ***, The Structural Conservation of Panel Paintings, Proceedings of a Symposium at the J. Paul Getty Museum (www.getty.edu), April, 1995.
- [15] I. Sandu, I.C.A. Sandu, Chimia conservării si restaurării (Chemistry of Conservation and Restoration), vol I and II, Editura Corson, Iasi, 2002.
- [16] M.C. Timar, A. Tuduce-Traistaru, M. Porojan, L. Gurau, An Investigation of Consolidants Penetration in Wood. Part 1: General Methodology and Microscopy, PRO LIGNO, 6, 4, 2010, pp.13-27.
- [17] I. Wang, A.P. Schniewind, Consolidation of Deteriorated Wood with Soluble Resins, Journal of the American Institute for Conservation, 24, 2, 1985, pp.77 – 91.
- [18] S. Chapman, D. Mason, Literature Review: the Use of Paraloid B-72 as a Surface Consolidant for Stained Glass, Journal of the American Institute for Conservation, 42, 2, 2001, pp. 381-392.
- [19] A.P. Schnlewind, On the Reversibility of Consolidation Treatments of Deteriorated Wood with Soluble Resins, (1988), available on- line at cool.conservation-us.org.
- [20] J.D. Rodrigues, A. Grossi, Indicators and Ratings for the Compatibility Assessment of Conservation Actions, Journal of Cultural Heritage, 8, 2007, pp. 32-43.
- [21] P.S. Storch, *Fills for Bridging Structural Gaps in Wooden Objects*, Journal of the American Institute for Conservation, 33, 1994, pp. 71-75.
- [22] D.L. Mamilton, C.W. Smith, Development of new conservation technologies; Scientific application of new conservation techniques; Recording of archaeological data; 3-D scanning, The Nautical Archaeology Program at Texas A&M University (www. nautarch.tamu.edu), Institute of Nautical Archaeology, Austin, 2010.
- [23] C.A. Clausen, Nanotechnology: Implications for the Wood Preservation Industry, IRG, Section 3, 38th Annual Meeting Jackson Lake Lodge, Wyoming, USA, 2007.
- [24] S.C. Ghosh, C. Mai, H. Militz, The Efficacy of Commercial Silicones against Blue Stain and Mould Fungi in Wood, IRG, Section 3, Wood Protecting Chemicals, 39th Annual Meeting, Istanbul, Turkey, 2008.
- [25] F.Green, R.A. Arango, Wood Protection by Commercial Silver Formulations against Eastern Subterranean Termites, IRG, Section 3, Wood Protecting Chemicals, 38th Annual Meeting Jackson Lake Lodge, Wyoming, USA, 2007.
- [26] C. Wang, C. Piao, From Hydrophilicity to Hydrophobicity: a Critical Review PartII. Hydrophobic Conversion, Wood and Fiber Science, 43, 1, 2011, pp.1-16.
- [27] L. Dumitrescu, I. Manciulea, Nanocomposite Materials Based on Polymers and Alumina Nanoparticles, Environmental Engieneering and Management Journal, 8, 4, 2009, pp. 953-956.
- [28] H. Miyafuji, S. Saka, Fire-resisting Properties in Several TiO₂ Wood-Inorganic Composites and Their Topochemistry, Wood Science and Technology Journal, Springer-Verlag Press, 31, 1997, pp. 449-455.
- [29] J. McCrank, Nanotechnology Application in the Forest Sector, Canadian Forest Service, Ottawa, 2009.
- [30] L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the Antibacterial Behaviour of Suspensions of ZnO Nanoparticles (ZnO Nanofluids), Journal of Nanoparticle Research, 9, 2006, pp.479–489.

- [31] B. Kaygin, E. Akgun, Comparison of Conventional Varnishes with Nanolacke UV Varnish With Respect to Hardness and Adhesion Durability, International Journal of Molecular Sciences, 9, 2008, pp. 476-485.
- [32] J. Wazny, A. Kundzewicz, Conditions and Possibility of Nanobiocides Formulation for Wood Protection, IRG, Section 3, Wood Protecting Chemicals, 39th International Meeting, Istanbul, Turkey, 2008.
- [33] H. Matsunaga, M. Kiguchi, P. Evans, Micro-Distribution of Metals in Wood Treated with a Nano-Copper Wood Preservative, IRG, Section 4, 38th Annual Meeting Jackson Lake Lodge, Wyoming, USA, 2007.

Received: October 10, 2010 Accepted: November 16, 2010