

FLORAL DIVERSITY IN VADODARA GARDENS, GUJARAT, INDIA

Dhara R. SHAH, Deepa J. GAVALI^{*}

Gujarat Ecology Society, Synergy House, Subhanpura, Vadodara - 390023, Gujarat, India

Abstract

Garden biodiversity is an integral part of the urban ecosystem and play an important role in improving green infrastructure and aid in climate change adaptations. Little research is available on the floral diversity of the parks and gardens. The present study is an attempt to document the floral diversity of 77 gardens in Vadodara city and elucidate trends based on the size of the gardens. Study indicated presence of 217 species belonging to 72 families from the gardens of Vadodara city. The floristic data revealed that around 53% of the species represented indigenous species and 47% belonged to exotic species. Paper concluded that diversity is more in the small gardens as compared to large sized garden, where plantation of few species in undertaken. Species suitable to the semi-arid climate with low water requirement dominated the gardens indicative of better management practices and adapt to climate change.

Keywords: Garden; Urban ecosystem; Exotic species; Plant Diversity, Gujarat;

Introduction

Parks and gardens are an important part of urban ecology, and this supports the ecological integrity of cities and protects the health of the urban dwellers. City parks and open space improve our physical and psychological health, strengthen our communities, and make our cities and neighbourhoods more attractive places to live and work. Green spaces keep the temperature low, filter air, remove pollutants, attenuate noise and replenish ground water [1-2]. Garden biodiversity can play a key role in improving green infrastructure, with positive effects for human health and climate change adaptation. Furthermore, also urban temperature: green spaces mitigate the effects of extreme heat and cold. They support human health by easing stress and providing physical exercise [3]. Urban planners believed the parks would improve public health and relieve the stresses of urban life. Green spaces in urban areas provide substantial environmental benefits [4].

Trees in urban areas reduce air pollution by absorbing certain airborne pollutants from the atmosphere [5]. Trees also act as natural air conditioners to help keep cities cooler, mitigating the effects of artificial construction. The evaporation from a single large tree can produce the cooling effect of ten room-size air conditioners operating 24 hours a day. Green cover and urban forests can moderate temperature by providing shade and cooling an area, thus helping reduce the risk of heat-related illnesses for city dwellers [6-8].

The U.S. Forest Service calculated that over a 50-year lifetime one tree generates \$31,250 worth of oxygen, provides \$62,000 worth of air pollution control, recycles \$37,500 worth of water, and controls \$31,250 worth of soil erosion. In New York City, for example,

^{*} Corresponding author: deepagavali@yahoo.com

nearly half of the city's 59 community board districts have less than 1.5 acres of parkland per 1,000 residents. In Atlanta, for example, parkland covers only 3.8 percent of the city's area [7]. US and Chinese cities have developed innovative ways to create new green space. Urban green space projects need more integrative sustainability policies to protect communities [9].

Greater attention requires to be paid to the selection of trees in cities, not just with a view to easy maintenance, as is currently the case, but to select an appropriate mix of trees that supports biodiversity and maximizes environmental and ecosystem services [10].

Little research or attention is paid to the parks and gardens, making it difficult to plan strategies for urban conservation [11-13]. Ample research is available on the gardens associated with the National Parks, but few studies conducted in the urban parks and gardens [12-17]. In India some efforts to document biodiversity of parks and gardens is done [18]. There are over 2500 botanic gardens in 150 countries across the world holding over 6 million accessions of living plants representing around 80,000 species [19], as well as 250,000 seed bank accessions [20]. In general, botanical gardens focus on conserving the inter-specific diversity of flora and thus, tend to maintain a large number of species with relatively few accessions for each species. In its country report, China indicated that it had 170 botanical gardens and India reported 150 [19-20]. Vadodara City has better green cover standing next to Gandhinagar [21].

Vadodara City has one of the oldest and largest gardens, Sayajibaug covering an area of 64ha. But there is hardly any survey to document the floristic diversity and relate the same with management of the parks. This study will thus provide important information on the biodiversity of parks in this little researched.

Material and Methods

Vadodara lies between $22^{\circ}18'00'$ 'N and $73^{\circ}12'01'$ E longitude. River Vishwamitri passes through the city-dividing city into eastern and western part. There is total number of 77 gardens within the city. The present study was undertaken in 30 gardens, which were of substantial size and managed well. The gardens were categorized into three categories; category 1 included the gardens that were of size 1ha, category 2 ranged from 1.1ha to 5ha, category 3 included garden above 5ha. The distribution of different gardens within the city showed 16 gardens in category 1, 11 gardens in category 2, and only two gardens in category 3 (Fig. 1).

Fig. 1. Map of the study area

Survey of each garden was taken and all the species occurring within the garden was noted down. Standard reference was used for identification of the species [21]. In case of new plants digital photographs were taken, and the plants were later identified in the lab using various manuals. The species were then grouped based on habitat into trees, shrubs, herbs, grasses and climbers.

Results and discussion

A total number of 217 species belonging to 72 families were reported from the gardens of Vadodara city (Table 1). Bogor botanical garden has been home to various species, 1349 rare plants, 255 trees over a century old, 9000 species of orchids, 216 species of ants, 96 species of butterflies, 35 species of birds [22].

			List of Gar	den's Fl	ora		
No.	Botanical Name	No.	Botanical Name	No.	Botanical Name	No.	Botanical Name
1	Bougainvillea	55	Canna spp.	109	Anthocephalus chinensis	163	Manihot esculenta
2	Clitoria ternatea	56	Carissa congesta	110	Areca catechu	164	Manilkara hexandra
3	Combretum	57	Catharanthus roseus	111	Azadirachta indica	165	Manilkara zapota
	rotundifolium						
4	Epipremnum aureum	58	Cestrum nocturnum	112	Bauhinia monandra	166	Melia azedarach
5	Ipomoea marginata	59	Codiaeum variegatum	113	Bauhinia purpurea	167	Michelia champaca
6	Jacquemontia	60	Cordyline terminalis	114	Bauhinia x blakeana	168	Miliusa tomentosa
	pentanthos						
7	Monstera deliciosa	61	Crinum asiaticum	115	Bergera koenigii	169	Mimusops Elengi
8	Parthenocissus	62	Cycas circinalis	116	Bismarckia nobilis	170	Mitragyna parvifolia
	quinquefolia		-				
9	Parthenocissus	63	Dieffenbachia amoena	117	Bixa orellana	171	Moringa oleifera
	tricuspidata						0 0
10	Petrea volubilis	64	Dracaena reflexa	118	Bombax ceiba	172	Morus alba
11	Pyrostegia venusta	65	Duranta erecta	119	Borassus flabellifer	173	Morus Bomcycis
12	Quisqualis indica	66	Euphorbia cooperi	120	Caesalpinia sappan	174	Murraya paniculata
13	Artemisia vulgaris	67	Euphorbia cvathophora	121	Callistemon citrinus	175	Myristica fragrans
14	Cynadon dactylon	68	Euphorbia leucocephala	122	Callistemon viminalis	176	Neolamarckia cadamba
15	Agave americana	69	Euphorbia neriifolia	123	Capparis decidua	177	Nyctanthes arbor-tristis
16	Aloe maculata	70	Ficus elastica	124	Carica papava	178	Pandanus
					115		odoratissimus
17	Anagallis arvensis ssp.	71	Ficus pumila	125	Carvota urens	179	Parkia biglandulosa
	foemina		I I I I I I I I I I I I I I I I I I I				0
18	Anemone coronaria	72	Galphimia glauca	126	Casearia tomentosa	180	Peltophorum
			1 0				pterocarpum
19	Bambusa balcooa	73	Gardenia iasminoides	127	Cassia fistula	181	Phoenix dactvlifera
20	Bambusa bambos	74	Hamelia patens	128	Cassia grandis	182	Phoenix sylvestris
21	Bambusa tuldoides	75	Hemigraphis colorata	129	Cassia roxburghii	183	Phyllanthus emblica
	Munro		0 1		0		2
22	Bambusa vulgaris	76	Hibiscus rosa-sinensis	130	Chloroxylon swietenia	184	Pithecellobium dulce
23	Brachvcome Iberidifolia	77	Ixora coccinea	131	Citrus aurantifolia	185	Platycladus orientalis
24	Caladium bicolor	78	Jasminum multiflorum	132	Cocos nucifera	186	Plumeria alba
25	Casuarina equisetifolia	79	Jasminum sambac	133	Commiphora wightii	187	Plumeria obtusa
26	Coreopsis tinctoria	80	Jatropha integerrima	134	Cordia dichotoma	188	Plumeria rubra
27	Dorotheanthus	81	Kerria iaponica	135	Cordia sebestena	189	Polvalthia longifolia
	bellidiformis		'Pleniflora'				35
28	Eleusine indica	82	Lantana camara var.	136	Cordia subcordata	190	Pongamia pinnata
			aculeata				0
29	Euphorbia prostrata	83	Malvaviscus penduliflorus	137	Corvmbia citriodora	191	Psidium guaiava
30	Freesia spp.	84	Mussaenda ervthrophylla	138	Couroupita guianensis	192	Ravenala
	11		<i></i>		1 0		madagascariensis
31	Gerbera iamesonii	85	Nerium oleander	139	Cvcas revoluta	193	Rovstonea regia
32	Glandularia pulchella	86	Nymphaea mexicana	140	Cyrtostachys renda	194	Salvadora oleoides
33	Helianthus annuus	87	Nymphaea pubescens	141	Dalbergia lanceolaria ssp.	195	Santalum album
			<i>y rr</i>		lanceolaria		
34	Hymenocallis littoralis	88	Pandanus sanderi	142	Dalbergia latifolia	196	Sapindus emarginatus
35	Iberis amara	89	Pentas lanceolata	143	Delonix regia	197	Sapindus trifoliatus
36	Ocimum tenuiflorum	90	Plectranthus scutellarioides	144	Dillenia indica	198	Scaevola taccada
37	Opuntia cochenillifera	91	Polyscias fruticosa	145	Drypetes roxburghii	199	Schizolobium
0,	er and cooncranyord	<i>.</i>		1.0	Jr stor row Sim		

Table 1. List of botanical name of plant species in the gardens.

							parahyba
38	Papaver bracteatum	92	Polyscias balfouriana	146	Dypsis lutescens	200	Senna spectabilis
39	Pittosporum tenuifolium	93	Rosa	147	Elaeis guineensis	201	Senna surattensis
40	Sansevieria trifasciata	94	Rosa 'Happy Wanderer'	148	Ficus benghalensis	202	Sesbania Sesban var.
							picta
41	Symphyotrichum novi-	95	Rosa 'Summer Snow'	149	Ficus hispida	203	Spathodea
	belgii						campanulata
42	Tanacetum	96	Rosa spp.	150	Ficus racemosa	204	Sterculia alata
10	cineraritfolium	07	<i>a</i>			205	a
43	Acalypha	9/	Sansevieria cylindrica	151	Ficus religiosa	205	Sterculia foetida
	chamaedrifolia	00	T 1	1.50	<i>a n i</i>	20.6	<i>a u</i>
44	Acalypha wilkesiana	98	Tabernaemontana	152	Gmelina arborea	206	Sterculia guttata
45		00	aivaricata	150	TT 11 . 1.C.1.	207	а I II
45	Adenium obesum	99	Tabernaemontana	153	Haldina cordifolia	207	Swietenia macrophylla
10		100	rostrata	154		200	a · · ·
46	Aloe barbadensis	100	Tagetes erecta	154	Hippomane mancinella	208	Syzygum cumini
47	Alstonia venenata	101	Thunbergia erecta	155	Holoptelea integrifolia	209	Tabebuia aurea
48	Alternanthera brasiliana	102	Tradescantia spathacea	156	Hyophorbe lagenicaulis	210	Tabebuia pallida
49	Barleria prionitis	103	Turnera ulmifolia	157	Hyphaene indica	211	Tabebuia rosea
50	Cajanus cajan	104	Aegle Marmelos	158	Jacaranda mimosifolia	212	Tamarindus indica
51	Calendula officinalis	105	Alstonia scholaris	159	Lannea coromandelica	213	Tecoma castanifolia
52	Calliandra emarginata	106	Annona reticulata	160	Livistona chinensis	214	Tecoma stans
53	Calliandra	107	Annona squamosa	161	Madhuca longifolia var.	215	Tectona grandis
	haematocephala				latifolia		
54	Calotropis procera	108	Anogeissus sericea	162	Mangifera indica	216	Thevetia peruviana
			var.sericea				
						217	Ziziphus mauritiana

Among all the 72 families recorded, Arecaceae was found to be the most abundant with representation of 14 species followed by Caesalpiniaceae family (13 species), Apocynaceae (12 species) and Euphorbiaceae (11 species) (Table 2). Arecaceae family includes the palm trees, with distinguishing characteristics of large, compound, evergreen leaves arranged at the top of an unbranched stem. Due to its straight growth with low canopy cover, it is preferred in the gardens for their artistic feature.

Family	No. of species
Arecaceae	14
Caesalpiniaceae	13
Apocynaceae	12
Euphorbiaceae	11
Asteraceae, Rubiaceae	9
Bignoniaceae, Moraceae	8
Fabaceae, Poaceae, Verbenaceae	6
Myrtaceae, Rosaceae, Rutaceae	5
Annonaceae, Araceae, Mimosaceae, Sapotaceae	4
Acanthaceae, Agavaceae, Boraginaceae, Combretaceae, Meliaceae, Oleaceae, Sterculiaceae	3
Cycadaceae, Amaryllidaceae, Anacardiaceae, Araliaceae, Asphodelaceae, Convolvulaceae,	2
Lamiaceae, Malvaceae, Nymphaeaceae, Pandanaceae, Ruscaceae, Sapindaceae, Vitaceae	Z
Aizoaceae, Amaranthaceae, Asclepiadaceae, Bixaceae, Bombacaceae, Brassicaceae,	
Burseraceae, Cactaceae, Cannaceae, Capparaceae, Caricaceae, Casuarinaceae, Commelinaceae,	
Cupressaceae, Dilleniaceae, Goodeniaceae, Iridaceae, Lecythidaceae, Magnoliaceae,	1
Malpighiaceae, Moringaceae, Myristicaceae, Myrsinaceae, Nyctaginaceae, Papaveraceae,	1
Passifloraceae, Phyllanthaceae, Pittosporaceae, Putraniivaceae, Ranunculaceae, Rhamnaceae,	

Table 2. Representation of various families in the gardens

Salicaceae, Salvadoraceae, Santalaceae, Solanaceae, Strelitziaceae, Ulmaceae

The floristic data revealed that around 53% of the species represented indigenous species and 47% belonged to exotic species. The percentage of exotic was low, but better compared to gardens in Bangalore city, where 65% of the trees belonged to introduced species [23]. In study of gardens in Potsdam, the proportion of indigenous species in park was reported as high as 81% [24], or in parks in the South Korean city of Chonju, where exotic species constitute less

than 30% of the population [25-26]. Rapid adaptive capacities of the exotics make them better suited for environment and thus preferred. The presence of exotics in Vadodara gardens is not high, but requires intervention at this junction to promote plantation of indigenous species.

On comparing the habit of the all the 217 species recorded, it was found that 52% of the species represented trees, 28% shrubs and 12% herbs (Fig. 2). Climbers and grasses represented only 5% and 0.92% respectively. The trees largely belonged to evergreen and introduced species. Similar finding was reported in Bangalore gardens, where 88% of the trees were exotic in nature [10]. About 50% of the herbs belonged to introduced species and largely represented cactus species. Cactus is easy to grow and requires less maintenance, hence is preferred in the parks.

Fig. 2. Representation of different life forms in the gardens

The species distribution in different garden categories indicated presence of around 142 species in category 1, 105 species in category 2 and 112 species in category 3. This showed that smaller gardens (less than 5 ha) have larger diversity compared to larger garden (more than 10 ha). In case of larger gardens, there is plantation of similar species over large areas to improve the aesthetic value and in this regards a decline in diversity was reported. Similar findings were reported [27-28], where they showed that very small in area tend to be characterized by high levels of diversity and microhabitat heterogeneity, with large proportions of exotic species. These small areas then constitute critical biodiversity hotspots [15-19].

Fig. 3. Group wise distribution of species

Species distribution in each category differed and Sansevieria trifasciata, Platycladus orientalis Jasminum sambac was the most common species in category 1 gardens. All the species are ornamental and easy to maintain in smaller space. While in category 2 gardens, Bougainvillea, Casuarina equisetifolia, Sansevieria trifasciata were the most common species. Bougainvillea is used as hedges along the boundary with high aesthetics value and improve the look of the garden. Sansevieria trifasciata is the most common species found in all the gardens and native to tropical West Africa from Nigeria east to the Congo. The species grows well in warmer climates like Vadodara and requires low watering. In case of category 3 species with green canopy was reported like Alstonia scholaris, Bauhinia purpurea, Catharanthus roseus, Delonix regia, Ficus religiosa and Tabernaemontana divaricata.

Conclusion

Thus, the parks and gardens have shown presence of multi taxa. It is concluded that diversity is more in the small gardens, whereas in the gardens above 10ha where plantation of few species is preferred. There is presence of exotics in the gardens, which could be replaced with indigenous species and the findings point towards possible study of faunal diversity to relate the vegetation characteristics of the gardens in Vadodara city.

Acknowledgment

The authors are thankful to Gujarat Ecology Society for providing an opportunity to work in the topic. The authors are thankful to Ms. Amita Sankhwal for helping in the identification of species.

References

- F.J. Escobedo, T. Kroeger, J.E. Wagner, Urban forests and pollution mit-igation: Analyzing ecosystem services and disservices, Environmental Pollution, 159(8), 2011, pp. 2078–2087.
- [2] L. Glowka, F. Burhenne-Guilmin, H. Synge, J.A. McNeely, L. Gündling, A Guide to the Convention on Biological Diversity, (Environmental Policy and Law Paper No. 30), IUCN, Island Press, Gland and Cambridge, 1994.
- [3] P. Groenewegen, A. van den Berg, S. de Vries, R. Verheij, Vitamin G: Effects of green space on health, well-being, and social safety, **BioMed Central Public Health**, 6(1), 2006, pp. 149-157.
- [4] K. Tzoulas, P. James, Finding links between urban biodiversity and human health and well-being, 4th International Postgraduate Research Conference, 1st-2nd April 2004, University of Salford, 2004.
- [5] D.J. Nowak, D.E. Crane, J.C. Stevens, *Air pollution removal by urban treesand shrubs in the United States*, **Urban Forestry and Urban Greening**, **4**, 2006, pp.115–123.
- [6] W. Curran, T. Hamilton, *Just green enough: Contesting environmental gentrification in Green point, Brooklyn*, Local Environment, 17, 2012, pp. 1027–1042.
- [7] D.J. Nowak, The Effects of Urban Trees on Air Quality, Washington, D.C.: U.S. Department of Agriculture Forest Service, 2006, http://www.fs.fed.us/ne/syracuse/gif/trees.pdf.

- [8] J. Kithiia, A. Lyth, Urban Wildscape and Green Spaces in Mombasa and Their Potential Contribution to Climate Change Adaptation and Mitigation, Environment and Urbanization, 23(1), 2011, pp. 251-256.
- [9] J.R. Wolch, J. Byrneb, J.P. Newell, Urban green space, public health, and environmental justice: The challenge of making cities 'just green enough, Landscape and Urban Planning, 125, 2014, pp. 234–244.
- [10] H. Nagendra, D. Gopal, Street trees in Bangalore: density, diversity, composition and distribution, Urban Forestry and Urban Green, 9(2), 2010, pp. 129-137.
- [11] A.A. Alvey, *Promoting and preserving biodiversity in the urban forest*, **Urban Forestry** and **Urban Green**, **5**(4), 2006, pp. 195–201.
- [12] L. Weifeng, O. Zhiyun, M. Xuesong, W. Xiaoke, *Plant species composition in relation to green cover configuration and function of urban parks in Beijing, China, Ecology Research of Japan, 21, 2006*, pp. 221–237.
- [13] C.Y. Jim, W.Y. Chen, *Diversity and distribution of landscape trees in the compact Asian city of Taipei*, Applied Geography, **29**, 2009, pp. 577–587.
- [14] E. Fernández-Juricic, J. Jokimäki, A habitat island approach to conserving birds in urban landscapes: Case studies from southern and northern Europe, Biodiversity Conservation 10, 200, pp. 12023–2043.
- [15] C.Y. Jim, H.T. Liu, Patterns and dynamics of urban forests in relation to land use and development history in Guangzhou City, China, The Geographical Journal, 167(4), 2001, pp. 358–375.
- [16] M.L. McKinney, *Effects of urbanization on species richness: A review of plants and animals*, Urban Ecosystem, 11, 2008, pp. 161–176.
- [17] J. Cornelis, M. Hermy, *Biodiversity relationships in urban and suburban parks in Flanders*, Landscape and Urban Planing, 69, 2004, pp. 385–401.
- [18] T. Ida, The Role of Ex Situ Conservation of Trees in Living Stands, (Guidelines & Technical Notes No.64), Danida Forest Seed Centre, Humlebaek, Denmark, 2003.
- [19] P. Wyse Jackson, *Experimentation on a large scale An analysis of the holdings and resources of Botanic Gardens*, **Botanic Garden News**, **3**(3), 1999, pp. 27-30.
- [20] B. Hawkins, Plants for Life: Medicinal Plant Conservation and Botanic Gardens, Botanic Gardens Conservation International, Richmond UK, 2008.
- [21] G.L. Shah, Flora of Gujarat State Vol. I and II., Sardar Patel University, Vallabh Vidyanagar, 1978.
- [22] O. Hotimaha, P. Wirutomob, H.S. Alikodrac, Conservation of world heritage botanical garden in an environmentally friendly city, **Procedia Environmental Sciences**, 28, 2015, pp. 453 – 463.
- [23] H. Nagendra, D. Gopal, Tree diversity, distribution, history and change in urban parks: studies in Bangalore, India, Urban Ecosystems, 14(3), 2011, pp. 211–223.
- B. Aminzadeh, M. Khansefid, A case study of urban ecological networks and a sustainable city: Tehran's metropolitan area, Urban Ecosystems, 13(1), 2010, pp. 23-36.
 M.L. McKinney, Urbanization as a major cause of biotic homogenization. Biological Conservation, 127, 2006. pp. 247–260.
- [25] H. Nagendra, D. Rocchini, High resolution satellite imagery for tropical biodiversity assessment: the devil is in the detail, **Biodiversity Conservation**, 17, 2008, pp. 3431– 3442.

- [26] J. Beattie, C. Kollin, G. Moll, *Trees Help Cities Meet Clean Water Regulations*, American Forests, 106(2), 2000, pp. 18-19.
- [27] * * *, Botanic Gardens Conservation International, A Review of International Conventions Which Affect the Work of Botanic Gardens, **Botanic Gardens Conservation News**, 3(2), 1999, pp. 29-55.
- [28] T.I. Borokini The State of Ex-Situ Conservation in Nigeria, International Journal of Conservation Science, 4(2), 2013, pp. 197-212.

Received: May 14, 2016 Accepted: February 10, 2017